Russell J Composto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5222674/publications.pdf

Version: 2024-02-01

180 papers 7,768 citations

52 h-index 69250 77 g-index

182 all docs

182 docs citations

times ranked

182

8374 citing authors

#	Article	IF	CITATIONS
1	Electrochemically deposited molybdenum disulfide surfaces enable polymer adsorption studies using quartz crystal microbalance with dissipation monitoring (QCM-D). Journal of Colloid and Interface Science, 2022, 614, 522-531.	9.4	2
2	Effect of Graft Length and Matrix Molecular Weight on String Assembly of Aligned Nanoplates in a Lamellar Diblock Copolymer. Macromolecules, 2022, 55, 3166-3175.	4.8	2
3	pH-Mediated nanoparticle dynamics in hydrogel nanocomposites. Soft Matter, 2021, 17, 2765-2774.	2.7	9
4	Interfacial Compatibilization in Ternary Polymer Nanocomposites: Comparing Theory and Experiments. Macromolecules, 2021, 54, 797-811.	4.8	14
5	Nanocomposites of 2D-MoS ₂ Exfoliated in Thermotropic Liquid Crystals., 2021, 3, 704-712.		9
6	Grafted Nanoparticle Surface Wetting during Phase Separation in Polymer Nanocomposite Films. ACS Applied Materials & Draft Separation in Polymer Nanocomposite Films. ACS Applied Materials & Draft Separation in Polymer Nanocomposite Films. ACS Applied Materials & Draft Separation in Polymer Nanocomposite Films. ACS Applied Materials & Draft Separation in Polymer Nanocomposite Films. ACS Applied Materials & Draft Separation in Polymer Nanocomposite Films. ACS Applied Materials & Draft Separation in Polymer Nanocomposite Films. ACS Applied Materials & Draft Separation in Polymer Nanocomposite Films. ACS Applied Materials & Draft Separation in Polymer Nanocomposite Films. ACS Applied Materials & Draft Separation in Polymer Nanocomposite Films. ACS Applied Materials & Draft Separation in Polymer Nanocomposite Films. ACS Applied Materials & Draft Separation in Polymer Nanocomposite Films. ACS Applied Materials & Draft Separation in Polymer Nanocomposite Films. ACS Applied Materials & Draft Separation in Polymer Nanocomposite Films. ACS Applied Materials & Draft Separation in Polymer Nanocomposite Films. ACS Applied Nanocomposite Films.	8.0	12
7	Effect of Nanoscale Confinement on Polymer-Infiltrated Scaffold Metal Composites. ACS Applied Materials & Samp; Interfaces, 2021, 13, 44893-44903.	8.0	7
8	Kinetic Monitoring of Block Copolymer Self-Assembly Using In Situ Spectroscopic Ellipsometry. ACS Macro Letters, 2020, 9, 1095-1101.	4.8	3
9	Single-Particle Tracking of Nonsticky and Sticky Nanoparticles in Polymer Melts. Macromolecules, 2020, 53, 3933-3939.	4.8	25
10	Nanorod position and orientation in vertical cylinder block copolymer films. Soft Matter, 2020, 16, 3005-3014.	2.7	9
11	Characterizing the Areal Density and Desorption Kinetics of Physically Adsorbed Polymer in Polymer Nanocomposite Melts. Macromolecules, 2020, 53, 2744-2753.	4.8	19
12	Nanoparticle diffusion during gelation of tetra poly(ethylene glycol) provides insight into nanoscale structural evolution. Soft Matter, 2020, 16, 2256-2265.	2.7	12
13	Polymer Blend Systems With an Added Solvent. RSC Soft Matter, 2020, , 73-113.	0.4	2
14	Particle tracking of nanoparticles in soft matter. Journal of Applied Physics, 2020, 127, .	2.5	51
15	Phase Behavior of Grafted Polymer Nanocomposites from Field-Based Simulations. Macromolecules, 2019, 52, 5110-5121.	4.8	22
16	Equilibrium Field Theoretic Study of Nanoparticle Interactions in Diblock Copolymer Melts. Journal of Physical Chemistry B, 2019, 123, 9466-9480.	2.6	11
17	Cross-linker-Modulated Nanogel Flexibility Correlates with Tunable Targeting to a Sterically Impeded Endothelial Marker. ACS Nano, 2019, 13, 11409-11421.	14.6	24
18	Modeling of Entangled Polymer Diffusion in Melts and Nanocomposites: A Review. Polymers, 2019, 11, 876.	4.5	47

#	Article	IF	Citations
19	Nanorod Diffusion in Polymer Nanocomposites by Molecular Dynamics Simulations. Macromolecules, 2019, 52, 2513-2520.	4.8	30
20	Multiscale Dynamics of Small, Attractive Nanoparticles and Entangled Polymers in Polymer Nanocomposites. Macromolecules, 2019, 52, 2181-2188.	4.8	36
21	Experiments and Simulations Probing Local Domain Bulge and String Assembly of Aligned Nanoplates in a Lamellar Diblock Copolymer. Macromolecules, 2019, 52, 8989-8999.	4.8	14
22	Dendrimer Ligand Directed Nanoplate Assembly. ACS Nano, 2019, 13, 14241-14251.	14.6	22
23	Temperature-Dependent Nanoparticle Dynamics in Poly(<i>N</i> isopropylacrylamide) Gels. Macromolecules, 2018, 51, 3597-3607.	4.8	26
24	Alignment of Nanoplates in Lamellar Diblock Copolymer Domains and the Effect of Particle Volume Fraction on Phase Behavior. ACS Macro Letters, 2018, 7, 1400-1407.	4.8	24
25	Flexible Nanoparticles Reach Sterically Obscured Endothelial Targets Inaccessible to Rigid Nanoparticles. Advanced Materials, 2018, 30, e1802373.	21.0	7 3
26	Intracellular nanoparticle dynamics affected by cytoskeletal integrity. Soft Matter, 2017, 13, 1873-1880.	2.7	44
27	Out-of-plane orientation alignment and reorientation dynamics of gold nanorods in polymer nanocomposite films. Soft Matter, 2017, 13, 2207-2215.	2.7	11
28	Nanomechanics of pH-Responsive, Drug-Loaded, Bilayered Polymer Grafts. ACS Applied Materials & Samp; Interfaces, 2017, 9, 12936-12948.	8.0	25
29	Polymer and spherical nanoparticle diffusion in nanocomposites. Journal of Chemical Physics, 2017, 146, 203331.	3.0	52
30	Grafted polymer chains suppress nanoparticle diffusion in athermal polymer melts. Journal of Chemical Physics, 2017, 146, 203332.	3.0	36
31	Polymer Diffusion from Attractive and Athermal Substrates. Macromolecules, 2017, 50, 3038-3042.	4.8	21
32	Competitive Adsorption of Polyelectrolytes onto and into Pellicle-Coated Hydroxyapatite Investigated by QCM-D and Force Spectroscopy. ACS Applied Materials & Samp; Interfaces, 2017, 9, 13079-13091.	8.0	16
33	Network confinement and heterogeneity slows nanoparticle diffusion in polymer gels. Journal of Chemical Physics, 2017, 146, 203318.	3.0	58
34	Nanorod Mobility Influences Polymer Diffusion in Polymer Nanocomposites. ACS Macro Letters, 2017, 6, 869-874.	4.8	10
35	Comparison of Field-Theoretic Approaches in Predicting Polymer Nanocomposite Phase Behavior. Macromolecules, 2017, 50, 8797-8809.	4.8	16
36	Retardation of shape change of Au nanorods using photoâ€crossâ€linkable ligands. Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 301-307.	2.1	10

#	Article	IF	Citations
37	Fine Golden Rings: Tunable Surface Plasmon Resonance from Assembled Nanorods in Topological Defects of Liquid Crystals. Advanced Materials, 2016, 28, 2731-2736.	21.0	50
38	Understanding Viscoelasticity Changes in Single Cells using Variable Indentation-Rate Viscoelastic Analysis. Biophysical Journal, 2016, 110, 366a.	0.5	0
39	Temperature-Dependent Suppression of Polymer Diffusion in Polymer Nanocomposites. ACS Macro Letters, 2016, 5, 735-739.	4.8	37
40	In memory of professor Edward J. Kramer. Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 117-117.	2.1	0
41	Influence of the Bound Polymer Layer on Nanoparticle Diffusion in Polymer Melts. ACS Macro Letters, 2016, 5, 1141-1145.	4.8	91
42	Macromolecule and Particle Dynamics in Confined Media. Macromolecules, 2016, 49, 5755-5772.	4.8	105
43	Engineering the Assembly of Gold Nanorods in Polymer Matrices. Macromolecules, 2016, 49, 1002-1015.	4.8	33
44	Dispersion and alignment of nanorods in cylindrical block copolymer thin films. Soft Matter, 2016, 12, 2177-2185.	2.7	31
45	In memory of professor Edward J. Kramer. Journal of Polymer Science Part A, 2016, 54, 227-227.	2.3	0
46	Ultralow-power switching via defect engineering in germanium telluride phase-change memory devices. Nature Communications, 2016, 7, 10482.	12.8	57
47	Entanglements in polymer nanocomposites containing spherical nanoparticles. Soft Matter, 2016, 12, 2567-2574.	2.7	61
48	Orientational Control of Polymer Grafted Nanorods. Macromolecules, 2016, 49, 1111-1119.	4.8	13
49	Dispersion of PMMA-grafted, mesoscopic iron-oxide rods in polymer films. Soft Matter, 2016, 12, 2550-2556.	2.7	10
50	Cell elasticity with altered cytoskeletal architectures across multiple cell types. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 61, 197-207.	3.1	108
51	Polymer conformations in polymer nanocomposites containing spherical nanoparticles. Soft Matter, 2015, 11, 382-388.	2.7	75
52	Targeted Release of Tobramycin from a pH-Responsive Grafted Bilayer Challenged with <i>S. aureus</i> Biomacromolecules, 2015, 16, 650-659.	5.4	65
53	Tuning Optical Properties of Functionalized Gold Nanorods through Controlled Interactions with Organic Semiconductors. Journal of Physical Chemistry C, 2015, 119, 17899-17909.	3.1	4
54	Local Polymer Dynamics and Diffusion in Cylindrical Nanoconfinement. Macromolecules, 2015, 48, 2324-2332.	4.8	51

#	Article	IF	CITATIONS
55	Anisotropic Polymer Conformations in Aligned SWCNT/PS Nanocomposites. ACS Macro Letters, 2015, 4, 916-920.	4.8	11
56	Fast Nanorod Diffusion through Entangled Polymer Melts. ACS Macro Letters, 2015, 4, 952-956.	4.8	39
57	Probing the Structure, Composition, and Spatial Distribution of Ligands on Gold Nanorods. Nano Letters, 2015, 15, 5730-5738.	9.1	46
58	Glass Transition Dynamics and Fragility of Ultrathin Miscible Polymer Blend Films. Macromolecules, 2015, 48, 6682-6689.	4.8	41
59	Nano-rheology of hydrogels using direct drive force modulation atomic force microscopy. Soft Matter, 2015, 11, 8165-8178.	2.7	78
60	Designing nanogel carriers for antibacterial applications. Acta Biomaterialia, 2014, 10, 2105-2111.	8.3	60
61	Nanoparticle Brush Architecture Controls Polymer Diffusion in Nanocomposites. Macromolecules, 2014, 47, 2404-2410.	4.8	44
62	Functional Polymer Nanocomposites Enhanced by Nanorods. Macromolecules, 2014, 47, 875-887.	4.8	118
63	Gold nanorod length controls dispersion, local ordering, and optical absorption in polymer nanocomposite films. Soft Matter, 2014, 10, 3404-3413.	2.7	28
64	Fast Polymer Diffusion through Nanocomposites with Anisotropic Particles. ACS Macro Letters, 2014, 3, 886-891.	4.8	23
65	Macromolecular Diffusion through a Polymer Matrix with Polymer-Grafted Chained Nanoparticles. Macromolecules, 2014, 47, 5357-5364.	4.8	35
66	Gold Nanorod Linking to Control Plasmonic Properties in Solution and Polymer Nanocomposites. Langmuir, 2014, 30, 1906-1914.	3.5	47
67	Chemically grafted fibronectin for use in QCM-D cell studies. Biosensors and Bioelectronics, 2014, 58, 249-257.	10.1	14
68	ICAM-1 Targeted Nanogels Loaded with Dexamethasone Alleviate Pulmonary Inflammation. PLoS ONE, 2014, 9, e102329.	2.5	68
69	Correlating macrophage morphology and cytokine production resulting from biomaterial contact. Journal of Biomedical Materials Research - Part A, 2013, 101A, 203-212.	4.0	98
70	Cellular Uptake and Intracellular Cargo Release From Dextran Based Nanogel Drug Carriers. Journal of Nanotechnology in Engineering and Medicine, 2013, 4, 110021-110028.	0.8	15
71	Hemocompatibility and biocompatibility of antibacterial biomimetic hybrid films. Toxicology and Applied Pharmacology, 2013, 272, 703-712.	2.8	29
72	Photo-activated porphyrin in combination with antibiotics: Therapies against Staphylococci. Journal of Photochemistry and Photobiology B: Biology, 2013, 129, 27-35.	3.8	28

#	Article	IF	CITATIONS
73	Topological entanglement length in polymer melts and nanocomposites by a DPD polymer model. Soft Matter, 2013, 9, 3877.	2.7	67
74	Hemocompatibility of chitosan/poly(acrylic acid) grafted polyurethane tubing. Journal of Materials Chemistry B, 2013, 1, 6382.	5.8	16
75	Strategies for dispersing, assembling, and orienting nanorods in polymers. Current Opinion in Chemical Engineering, 2013, 2, 95-102.	7.8	24
76	Hyaluronan and dextran modified tubes resist cellular activation with blood contact. Colloids and Surfaces B: Biointerfaces, 2013, 108, 44-51.	5.0	9
77	Temperature Dependence of Polymer Diffusion in MWCNT/PS Nanocomposites. Macromolecules, 2013, 46, 2317-2322.	4.8	28
78	Universal Scaling of Polymer Diffusion in Nanocomposites. ACS Macro Letters, 2013, 2, 485-490.	4.8	67
79	Polymer Chain Conformations in CNT/PS Nanocomposites from Small Angle Neutron Scattering. Macromolecules, 2013, 46, 5345-5354.	4.8	50
80	Do Attractive Polymer–Nanoparticle Interactions Retard Polymer Diffusion in Nanocomposites?. Macromolecules, 2013, 46, 4502-4509.	4.8	113
81	Excluded Volume Model for the Reduction of Polymer Diffusion into Nanocomposites. Journal of Physical Chemistry B, 2013, 117, 15675-15683.	2.6	37
82	Dispersion of Polymer-Grafted Nanorods in Homopolymer Films: Theory and Experiment. Macromolecules, 2013, 46, 2856-2869.	4.8	85
83	Direct Measurements of Polymer Brush Conformation Using Small-Angle Neutron Scattering (SANS) from Highly Grafted Iron Oxide Nanoparticles in Homopolymer Melts. Macromolecules, 2013, 46, 9341-9348.	4.8	66
84	Reversible swelling of chitosan and quaternary ammonium modified chitosan brush layers: effects of pH and counter anion size and functionality. Journal of Materials Chemistry, 2012, 22, 19605.	6.7	58
85	Polymer diffusion in a polymer nanocomposite: effect of nanoparticle size and polydispersity. Soft Matter, 2012, 8, 6512.	2.7	95
86	Using Miscible Polymer Blends To Control Depletion–Attraction Forces between Au Nanorods in Nanocomposite Films. Macromolecules, 2012, 45, 6078-6086.	4.8	47
87	Nanoscale Topography Mediates the Adhesion of F-Actin. Langmuir, 2012, 28, 12216-12224.	3.5	8
88	Controlling the Location of Nanoparticles in Polymer Blends by Tuning the Length and End Group of Polymer Brushes. ACS Macro Letters, 2012, 1, 252-256.	4.8	78
89	Entanglements and Dynamics of Polymer Melts near a SWCNT. Macromolecules, 2012, 45, 7274-7281.	4.8	48
90	Chitosan adsorption on hydroxyapatite and its role in preventing acid erosion. Journal of Colloid and Interface Science, 2012, 385, 235-243.	9.4	47

#	Article	IF	Citations
91	Gold Nanorods Dispersed in Homopolymer Films: Optical Properties Controlled by Self-Assembly and Percolation of Nanorods. ACS Nano, 2012, 6, 1578-1588.	14.6	72
92	Nanorod Assemblies in Polymer Films and Their Dispersion-Dependent Optical Properties. ACS Macro Letters, 2012, 1, 115-121.	4.8	88
93	A jamming morphology map of polymer blend nanocomposite films. Soft Matter, 2011, 7, 7262.	2.7	52
94	Polymer Tracer Diffusion Exhibits a Minimum in Nanocomposites Containing Spherical Nanoparticles. Macromolecules, 2011, 44, 191-193.	4.8	26
95	Human macrophage adhesion on polysaccharide patterned surfaces. Soft Matter, 2011, 7, 3599.	2.7	25
96	Macromolecular Diffusion in a Crowded Polymer Nanocomposite. Macromolecules, 2011, 44, 3494-3501.	4.8	124
97	Symmetric pH-Dependent Swelling and Antibacterial Properties of Chitosan Brushes. Langmuir, 2011, 27, 12458-12465.	3.5	59
98	Structure and Conformations of Polymer/SWCNT Nanocomposites. Macromolecules, 2011, 44, 9830-9838.	4.8	68
99	Human plasma protein adsorption onto dextranized surfaces: A two-dimensional electrophoresis and mass spectrometry study. Colloids and Surfaces B: Biointerfaces, 2011, 84, 241-252.	5.0	20
100	Competitive protein adsorption on polysaccharide and hyaluronate modified surfaces. Biofouling, 2011, 27, 505-518.	2.2	39
101	Micropatterning of three-dimensional electrospun polyurethane vascular grafts. Acta Biomaterialia, 2010, 6, 4229-4237.	8.3	129
102	Morphological Transitions of Blockâ€Copolymer Bilayers via Nanoparticle Clustering. Small, 2010, 6, 48-51.	10.0	36
103	Tunable Nanoscale Channels in Diblock Copolymer Films for Biomolecule Organization. Langmuir, 2010, 26, 10961-10967.	3.5	3
104	Creating Biomimetic Polymeric Surfaces by Photochemical Attachment and Patterning of Dextran. Langmuir, 2010, 26, 14126-14134.	3.5	30
105	Nanorod Self-Assembly for Tuning Optical Absorption. ACS Nano, 2010, 4, 6941-6949.	14.6	124
106	Patchy and Multiregion Janus Particles with Tunable Optical Properties. Nano Letters, 2010, 10, 603-609.	9.1	161
107	Self-assembled charged hydrogels control the alignment of filamentous actin. Soft Matter, 2010, 6, 915-921.	2.7	3
108	Polymer Diffusion Exhibits a Minimum with Increasing Single-Walled Carbon Nanotube Concentration. Macromolecules, 2009, 42, 7091-7097.	4.8	54

#	Article	IF	Citations
109	Minimum in Diffusion Coefficient with Increasing MWCNT Concentration Requires Tracer Molecules To Be Larger than Nanotubes. Macromolecules, 2009, 42, 8365-8369.	4.8	33
110	Amphiphilic Block Copolymer Films: Phase Transition, Stabilization, and Nanoscale Templates. Macromolecules, 2009, 42, 1017-1023.	4.8	21
111	Tuning optical properties of gold nanorods in polymer films through thermal reshaping. Journal of Materials Chemistry, 2009, 19, 2704.	6.7	102
112	Simultaneous Block Copolymer and Magnetic Nanoparticle Assembly in Nanocomposite Films. Macromolecules, 2009, 42, 1219-1228.	4.8	64
113	Covalent Nanoparticle Assembly onto Random Copolymer Films. Macromolecules, 2009, 42, 517-523.	4.8	21
114	Tunable Wetting of Nanoparticle-Decorated Polymer Films. Langmuir, 2009, 25, 11014-11020.	3 . 5	21
115	The inhibition of Staphylococcus epidermidis biofilm formation by vancomycin-modified titanium alloy and implications for the treatment of periprosthetic infection. Biomaterials, 2008, 29, 4684-4690.	11.4	206
116	Dispersion of polymer-grafted magnetic nanoparticles in homopolymers and block copolymers. Polymer, 2008, 49, 3568-3577.	3.8	154
117	Sintering Metal Nanoparticle Films. , 2008, , .		6
118	Surface Segregation of Counterions in Ionomer Films. Macromolecules, 2008, 41, 9299-9305.	4.8	7
119	Biomimetic Carbohydrate Substrates of Tunable Properties Using Immobilized Dextran Hydrogels. Biomacromolecules, 2008, 9, 2315-2321.	5 . 4	20
120	Hydrogenation of Mg film and Mg nanoblade array on Ti coated Si substrates. Applied Physics Letters, 2008, 93, 163114.	3.3	22
121	Nanoscale Block Copolymer Templates Decorated by Nanoparticle Arrays. Macromolecules, 2007, 40, 6316-6324.	4.8	37
122	Internal Phase Separation Drives Dewetting in Polymer Blend and Nanocomposite Films. Macromolecules, 2007, 40, 384-388.	4.8	42
123	Two-Dimensional Confinement of Nanorods in Block Copolymer Domains. Nano Letters, 2007, 7, 3662-3668.	9.1	127
124	Direct Observation of Nanoparticle Embedding into the Surface of a Polymer Melt. Langmuir, 2007, 23, 13169-13173.	3.5	43
125	Surface Segregation and Formation of Silver Nanoparticles Created In situ in Poly(methyl) Tj ETQq1 1 0.784314 i	gBT_/Over	lock 10 Tf 50
126	Adhesion of MC3T3-E1 cells to RGD peptides of different flanking residues: Detachment strength and correlation with long-term cellular function. Journal of Biomedical Materials Research - Part A, 2007, 81A, 150-160.	4.0	32

#	Article	IF	CITATIONS
127	Vancomycin covalently bonded to titanium alloy prevents bacterial colonization. Journal of Orthopaedic Research, 2007, 25, 858-866.	2.3	143
128	A Morphology Map Based on Phase Evolution in Polymer Blend Films. Macromolecules, 2006, 39, 153-161.	4.8	38
129	pH-Responsive Nanostructures Assembled from Amphiphilic Block Copolymers. Macromolecules, 2006, 39, 6063-6070.	4.8	78
130	Reversible Stimuli-Responsive Nanostructures Assembled from Amphiphilic Block Copolymers. Nano Letters, 2006, 6, 282-287.	9.1	69
131	Effect of biomaterial surface properties on fibronectin–α5β1 integrin interaction and cellular attachment. Biomaterials, 2006, 27, 1907-1916.	11.4	167
132	Phase Behavior of Polystyrene and Poly(styrene-ran-styrenesulfonate) Blends. Macromolecules, 2006, 39, 2373-2379.	4.8	38
133	Dextran Functionalized Surfaces via Reductive Amination:Â Morphology, Wetting, and Adhesion. Biomacromolecules, 2006, 7, 557-564.	5.4	35
134	Dewetting and Adsorption in Homopolymer Films Containing Triblock Copolymers: Role of Chain Architecture and Anchoring Block Molar Fraction. Journal of Adhesion, 2005, 81, 683-698.	3.0	1
135	A quantitative and selective chromatography method for determining coverages of multiple proteins on surfaces. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2005, 826, 198-205.	2.3	14
136	The effect of non-specific interactions on cellular adhesion using model surfaces. Biomaterials, 2005, 26, 1721-1730.	11.4	150
137	Apoptosis and Survival of Osteoblast-like Cells Are Regulated by Surface Attachment. Journal of Biological Chemistry, 2005, 280, 1733-1739.	3.4	83
138	Effect of Sequence Distribution on Copolymer Interfacial Activity. Macromolecules, 2005, 38, 10494-10502.	4.8	63
139	Self-Regulated Structures in Nanocomposites by Directed Nanoparticle Assembly. Nano Letters, 2005, 5, 1878-1882.	9.1	149
140	Breakdown of Dynamic Scaling in Thin Film Binary Liquids Undergoing Phase Separation. Physical Review Letters, 2004, 92, 185704.	7.8	47
141	Biomimetic Surfaces via Dextran Immobilization: Grafting Density and Surface Properties. Materials Research Society Symposia Proceedings, 2004, 826, 221.	0.1	2
142	Competitive adsorption of plasma proteins on polysaccharide-modified silicon surfaces. Materials Research Society Symposia Proceedings, 2004, 845, 303.	0.1	1
143	Effect of Nano-to Micro-Scale Surface Topography on the Orientation of Endothelial Cells. Materials Research Society Symposia Proceedings, 2004, 845, 297.	0.1	2
144	Adhesion promotion between a homopolymer probe and a glass substrate coated with a block copolymer monolayer. Polymer, 2004, 45, 4445-4451.	3.8	5

#	Article	IF	Citations
145	Title is missing!. Journal of Materials Science, 2003, 11, 237-248.	1.2	52
146	Dewetting of Thin Film Blends Containing Block Copolymer:Â Effects of Nonadsorbing Block Length and Substrate Hydrophobicity. Macromolecules, 2003, 36, 3254-3260.	4.8	26
147	Block Copolymer Adsorption from a Homopolymer Melt to Silicon Oxide:  Effects of Nonadsorbing Block Length and Anchoring BlockⰒSubstrate Interaction. Macromolecules, 2003, 36, 9897-9904.	4.8	28
148	Dextran Grafted Silicon Substrates: Preparation, Characterization And Biomedical Applications. Materials Research Society Symposia Proceedings, 2003, 774, 7251.	0.1	6
149	Kinetics of Surface and Interfacial Fluctuations in Phase Separating Polymer Blend Films. Macromolecules, 2002, 35, 2799-2809.	4.8	46
150	Application of ion scattering techniques to characterize polymer surfaces and interfaces. Materials Science and Engineering Reports, 2002, 38, 107-180.	31.8	100
151	Local acid environment in poly(ethylene-ran-methacrylic acid) ionomers. Journal of Polymer Science, Part B: Polymer Physics, 2002, 40, 2833-2841.	2.1	22
152	Confinement induced stabilization in polymer blend thin films. Polymer, 2001, 42, 9155-9162.	3.8	18
153	Investigating polymer blend miscibility with forward recoil spectrometry. Journal of Polymer Science, Part B: Polymer Physics, 2000, 38, 1547-1552.	2.1	7
154	Bioactive Ceramic And Model Surfaces Adsorb Ligands and Factors That Stimulate Cellular Function. Microscopy and Microanalysis, 2000, 6, 992-993.	0.4	0
155	Thin film polymer blends undergoing phase separation and wetting: Identification of early, intermediate, and late stages. Journal of Chemical Physics, 2000, 113, 10386-10397.	3.0	94
156	Hydrodynamic-flow-driven wetting in thin film polymer blends: Growth kinetics and morphology. Physical Review E, 2000, 61, 1659-1663.	2.1	45
157	Influence of Lateral Confinement on Phase Separation in Thin Film Polymer Blends. Macromolecules, 2000, 33, 3274-3282.	4.8	48
158	Effect of Block Copolymer Adsorption on Thin Film Dewetting Kinetics. Macromolecules, 2000, 33, 5505-5512.	4.8	35
159	Block Copolymer Adsorption at the Polymer Melt/Substrate Interface: The Effect of Matrix Competition. Macromolecules, 2000, 33, 2200-2205.	4.8	17
160	Polymer adsorption at polymer/solid interfaces. , 2000, , 181-228.		0
161	Ultraviolet laser-induced formation of thin silicon oxide film from the precursor \hat{l}^2 -chloroethyl silsesquioxane. Journal of Materials Research, 1999, 14, 990-994.	2.6	10
162	The interface between immiscible polymers studied by low-energy forward recoil spectrometry and neutron reflectivity. Polymer, 1999, 40, 4223-4228.	3.8	18

#	Article	IF	Citations
163	Spin-on-glass thin films prepared from a novel polysilsesquioxane by thermal and ultraviolet-irradiation methods. Thin Solid Films, 1999, 345, 244-254.	1.8	11
164	Surface Enrichment in a Miscible Random Copolymer Blend:  Influence of Polydispersity and Architecture. Macromolecules, 1999, 32, 4098-4105.	4.8	10
165	Î ² -Acetoxyethyl Silsesquioxanes: Chloride-Free Precursors for SiO2 Films Via Staged Hydrolysis. Materials Research Society Symposia Proceedings, 1999, 606, 251.	0.1	2
166	Effect of Molecular Weight on the Interfacial Excess, Tension, and Width in a Homopolymer/Binary Polymer Blend System. Macromolecules, 1998, 31, 870-878.	4.8	26
167	Crossover of a block copolymer brush in a polymer melt from a stretched to collapsed conformation. Physical Review E, 1997, 56, R2383-R2386.	2.1	14
168	A self-consistent field study of the wetting transition in binary polymer blends. Journal of Chemical Physics, 1997, 106, 1257-1263.	3.0	7
169	Unstable Polymer Bilayers. 2. The Effect of Film Thickness. Langmuir, 1997, 13, 1758-1766.	3 . 5	59
170	Staged development of modified silicon dioxide films. Journal of Sol-Gel Science and Technology, 1997, 8, 465-469.	2.4	8
171	Meanâ€field theory of the interface between a homopolymer and a binaryâ€polymer mixture. Journal of Chemical Physics, 1996, 105, 10134-10144.	3.0	7
172	Unstable Polymer Bilayers. 1. Morphology of Dewetting. Langmuir, 1995, 11, 4855-4861.	3. 5	70
173	Dewetting of Polymer Bilayers: Morphology and Kinetics. Materials Research Society Symposia Proceedings, 1994, 366, 71.	0.1	1
174	Ion irradiated polystyrene: transport and hardness Measurements. Materials Research Society Symposia Proceedings, 1994, 354, 357.	0.1	1
175	Matrix effects on diffusion in polymer blends. Macromolecules, 1992, 25, 4167-4174.	4.8	45
176	Reptation in polymer blends. Polymer, 1990, 31, 2320-2328.	3.8	68
177	Dopant concentration profiles in conducting poly(p-phenylenevinylene) by Rutherford backscattering spectrometry. Macromolecules, 1990, 23, 3675-3682.	4.8	10
178	Mutual diffusion in the miscible polymer blend polystyrene/poly(xylenyl ether). Macromolecules, 1988, 21, 2580-2588.	4.8	125
179	Fast macromolecules control mutual diffusion in polymer blends. Nature, 1987, 328, 234-236.	27.8	68
180	Fast Mutual Diffusion in Polymer Blends. Physical Review Letters, 1986, 57, 1312-1315.	7.8	87