
Takeshi Izawa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/52223/publications.pdf Version: 2024-02-01

TAKECHI IZANAA

#	Article	IF	CITATIONS
1	An SNP Caused Loss of Seed Shattering During Rice Domestication. Science, 2006, 312, 1392-1396.	12.6	833
2	Deletion in a gene associated with grain size increased yields during rice domestication. Nature Genetics, 2008, 40, 1023-1028.	21.4	794
3	Ehd1, a B-type response regulator in rice, confers short-day promotion of flowering and controls FT-like gene expression independently of Hd1. Genes and Development, 2004, 18, 926-936.	5.9	758
4	Fertile transgenic rice plants regenerated from transformed protoplasts. Nature, 1989, 338, 274-276.	27.8	548
5	Phytochrome mediates the external light signal to repress FT orthologs in photoperiodic flowering of rice. Genes and Development, 2002, 16, 2006-2020.	5.9	386
6	Plant bZIP Protein DNA Binding Specificity. Journal of Molecular Biology, 1993, 230, 1131-1144.	4.2	384
7	Plant bZIP proteins gather at ACCT elements. FASEB Journal, 1994, 8, 192-200.	0.5	378
8	Loss-of-Function Mutations of the Rice GAMYB Gene Impair α-Amylase Expression in Aleurone and Flower Development. Plant Cell, 2004, 16, 33-44.	6.6	296
9	A naturally occurring functional allele of the rice waxy locus has a GT to TT mutation at the 5' splice site of the first intron. Plant Journal, 1998, 15, 133-138.	5.7	265
10	<i>Ehd2</i> , a Rice Ortholog of the Maize <i>INDETERMINATE1</i> Gene, Promotes Flowering by Up-Regulating <i>Ehd1</i> Å Â. Plant Physiology, 2008, 148, 1425-1435.	4.8	250
11	A pair of floral regulators sets critical day length for Hd3a florigen expression in rice. Nature Genetics, 2010, 42, 635-638.	21.4	244
12	Adaptation of flowering-time by natural and artificial selection in Arabidopsis and rice. Journal of Experimental Botany, 2007, 58, 3091-3097.	4.8	243
13	Comparative biology comes into bloom: genomic and genetic comparison of flowering pathways in rice and Arabidopsis. Current Opinion in Plant Biology, 2003, 6, 113-120.	7.1	223
14	Phytochromes confer the photoperiodic control of flowering in rice (a short-day plant). Plant Journal, 2000, 22, 391-399.	5.7	219
15	Deciphering and Prediction of Transcriptome Dynamics under Fluctuating Field Conditions. Cell, 2012, 151, 1358-1369.	28.9	219
16	<i>Hd1</i> ,a <i>CONSTANS</i> ortholog in rice, functions as an <i>Ehd1</i> repressor through interaction with monocotâ€specific CCTâ€domain protein Ghd7. Plant Journal, 2016, 86, 221-233.	5.7	191
17	<i>ABERRANT PANICLE ORGANIZATION 2/RFL</i> , the rice ortholog of Arabidopsis <i>LEAFY</i> , suppresses the transition from inflorescence meristem to floral meristem through interaction with <i>APO1</i> . Plant Journal, 2012, 69, 168-180.	5.7	189
18	Down-regulation of RFL, the FLO/LFY homolog of rice, accompanied with panicle branch initiation. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 1979-1982.	7.1	186

Takeshi Izawa

#	Article	IF	CITATIONS
19	Os- <i>GIGANTEA</i> Confers Robust Diurnal Rhythms on the Global Transcriptome of Rice in the Field Â Â. Plant Cell, 2011, 23, 1741-1755.	6.6	184
20	Isolation of Rice Genes Possibly Involved in the Photoperiodic Control of Flowering by a Fluorescent Differential Display Method. Plant and Cell Physiology, 2002, 43, 494-504.	3.1	164
21	Genetically engineered rice resistant to rice stripe virus, an insect-transmitted virus Proceedings of the United States of America, 1992, 89, 9865-9869.	7.1	156
22	Becoming a model plant: The importance of rice to plant science. Trends in Plant Science, 1996, 1, 95-99.	8.8	142
23	The Birth of a Black Rice Gene and Its Local Spread by Introgression. Plant Cell, 2015, 27, 2401-2414.	6.6	132
24	Flowering Time Genes Heading date 1 and Early heading date 1 Together Control Panicle Development in Rice. Plant and Cell Physiology, 2011, 52, 1083-1094.	3.1	113
25	The Role of Casein Kinase II in Flowering Time Regulation Has Diversified during Evolution Â. Plant Physiology, 2010, 152, 808-820.	4.8	110
26	Ac as a tool for the functional genomics of rice. Plant Journal, 1999, 19, 605-613.	5.7	99
27	The rab16B Promoter of Rice Contains Two Distinct Abscisic Acid-Responsive Elements. Plant Physiology, 1996, 112, 483-491.	4.8	90
28	Molecular Dissection of the Roles of Phytochrome in Photoperiodic Flowering in Rice. Plant Physiology, 2011, 157, 1128-1137.	4.8	90
29	Transposon tagging in rice. Plant Molecular Biology, 1997, 35, 219-229.	3.9	79
30	DNA changes tell us about rice domestication. Current Opinion in Plant Biology, 2009, 12, 185-192.	7.1	77
31	RNAi-mediated Silencing of OsGEN-L (OsGEN-like), a New Member of the RAD2/XPG Nuclease Family, Causes Male Sterility by Defect of Microspore Development in Rice. Plant and Cell Physiology, 2005, 46, 699-715.	3.1	75
32	The <i>COP1</i> Ortholog <i>PPS</i> Regulates the Juvenile–Adult and Vegetative–Reproductive Phase Changes in Rice Â. Plant Cell, 2011, 23, 2143-2154.	6.6	73
33	Introduction and transposition of the maize transposable element Ac in rice (Oryza sativa L.). Molecular Genetics and Genomics, 1991, 227, 391-396.	2.4	71
34	Punctual Transcriptional Regulation by the Rice Circadian Clock under Fluctuating Field Conditions. Plant Cell, 2015, 27, 633-648.	6.6	69
35	SALAD database: a motif-based database of protein annotations for plant comparative genomics. Nucleic Acids Research, 2010, 38, D835-D842.	14.5	64
36	The Coincidence of Critical Day Length Recognition for Florigen Gene Expression and Floral Transition under Long-Day Conditions in Rice. Molecular Plant, 2013, 6, 635-649.	8.3	60

Takeshi Izawa

#	Article	IF	CITATIONS
37	Daylength Measurements by Rice Plants in Photoperiodic Shortâ€Day Flowering. International Review of Cytology, 2007, 256, 191-222.	6.2	59
38	Synthetic control of flowering in rice independent of the cultivation environment. Nature Plants, 2017, 3, 17039.	9.3	59
39	What is going on with the hormonal control of flowering in plants?. Plant Journal, 2021, 105, 431-445.	5.7	58
40	Trans-activation and stable integration of the maize transposable element Ds cotransfected with the Ac transposase gene in transgenic rice plants. Molecular Genetics and Genomics, 1993, 239, 354-360.	2.4	57
41	Anaerobic induction and tissue-specific expression of maize Adh1 promoter in transgenic rice plants and their progeny. Molecular Genetics and Genomics, 1991, 228, 40-48.	2.4	54
42	Light regulation of circadian clock-controlled gene expression in rice. Plant Journal, 2001, 26, 607-615.	5.7	52
43	Multiple introgression events surrounding the Hd1 flowering-time gene in cultivated rice, Oryza sativa L Molecular Genetics and Genomics, 2010, 284, 137-146.	2.1	51
44	Inference of the japonica Rice Domestication Process from the Distribution of Six Functional Nucleotide Polymorphisms of Domestication-Related Genes in Various Landraces and Modern Cultivars. Plant and Cell Physiology, 2008, 49, 1283-1293.	3.1	42
45	Transposon tagging in rice. , 1997, , 219-229.		40
46	Genomic adaptation of floweringâ€ŧime genes during the expansion of rice cultivation area. Plant Journal, 2018, 94, 895-909.	5.7	35
47	The Process of Rice Domestication: A New Model Based on Recent Data. Rice, 2008, 1, 127-134.	4.0	34
48	Physiological significance of the plant circadian clock in natural field conditions. Plant, Cell and Environment, 2012, 35, 1729-1741.	5.7	26
49	Genetic Relationship Between Phytochromes and <i>OsELF3–1</i> Reveals the Mode of Regulation for the Suppression of Phytochrome Signaling in Rice. Plant and Cell Physiology, 2019, 60, 549-561.	3.1	23
50	Histological and genetic characteristics associated with the seed-shattering habit of weedy rice (Oryza sativa L.) from Okayama, Japan. Breeding Science, 2011, 61, 168-173.	1.9	20
51	Deciphering and prediction of plant dynamics under field conditions. Current Opinion in Plant Biology, 2015, 24, 87-92.	7.1	18
52	In Silico Identification of Short Nucleotide Sequences Associated with Gene Expression of Pollen Development in Rice. Plant and Cell Physiology, 2008, 49, 1451-1464.	3.1	13
53	A study of phytohormone biosynthetic gene expression using a circadian clock-related mutant in rice. Plant Signaling and Behavior, 2011, 6, 1932-1936.	2.4	13
54	Fine-tuning of the setting of critical day length by two casein kinases in rice photoperiodic flowering. Journal of Experimental Botany, 2018, 69, 553-565.	4.8	13

TAKESHI IZAWA

#	Article	IF	CITATIONS
55	High Ambient Temperatures Inhibit Ghd7-Mediated Flowering Repression in Rice. Plant and Cell Physiology, 2021, 62, 1745-1759.	3.1	9
56	Reloading DNA History in Rice Domestication. Plant and Cell Physiology, 2022, 63, 1529-1539.	3.1	4
57	Reply to "Japonica rice carried to, not from, Southeast Asia― Nature Genetics, 2008, 40, 1265-1266.	21.4	3
58	Critical Gates in Day-Length Recognition to Control the Photoperiodic Flowering. Advances in Botanical Research, 2014, 72, 103-130.	1.1	3
59	Photoperiodic Control of Flowering in the Short-Day Plant <i>Oryza sativa</i> ., 2009, , 38-58.		2
60	Real-Time Monitoring of Key Gene Products Involved in Rice Photoperiodic Flowering. Frontiers in Plant Science, 2021, 12, 766450.	3.6	2
61	Comparative Molecular Biology in Photoperiodic Flowering Between the Short-Day Plant Rice and the Long-Day Plant Arabidopsis. , 2005, , 333-337.		1
62	Photoperiodic Flowering in Rice. Biotechnology in Agriculture and Forestry, 2008, , 163-176.	0.2	1
63	The Rice bZIP Transcriptional Activator RITA-1 Is Highly Expressed during Seed Development. Plant Cell, 1994, 6, 1277.	6.6	0
64	Understanding of Rice Domestication Process based on DNA Changes in Domestication-trait Genes Journal of the Brewing Society of Japan, 2017, 112, 15-21.	0.3	0