Wolfgang H Sommer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5221428/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Test–retest reliability of neural alcohol cueâ€reactivity: Is there light at the end of the magnetic resonance imaging tube?. Addiction Biology, 2022, 27, e13069.	2.6	9
2	Increased network centrality of the anterior insula in early abstinence from alcohol. Addiction Biology, 2022, 27, e13096.	2.6	14
3	Disrupted circadian expression of βâ€arrestin 2 affects rewardâ€related µâ€opioid receptor function in alcohol dependence. Journal of Neurochemistry, 2022, 160, 454-468.	3.9	5
4	Repetitive Transcranial Magnetic Stimulation inÂAlcohol Dependence: A Randomized, Double-Blind, Sham-Controlled Proof-of-Concept Trial Targeting the Medial Prefrontal andÂAnterior Cingulate Cortices. Biological Psychiatry, 2022, 91, 1061-1069.	1.3	48
5	From a systems view to spotting a hidden island: A narrative review implicating insula function in alcoholism. Neuropharmacology, 2022, 209, 108989.	4.1	14
6	Brain Network Allostasis after Chronic Alcohol Drinking Is Characterized by Functional Dedifferentiation and Narrowing. Journal of Neuroscience, 2022, 42, 4401-4413.	3.6	8
7	A History of Childhood Maltreatment Has Substance- and Sex-Specific Effects on Craving During Treatment for Substance Use Disorders. Frontiers in Psychiatry, 2022, 13, 866019.	2.6	5
8	Sodium oxybate for the maintenance of abstinence in alcohol-dependent patients: An international, multicenter, randomized, double-blind, placebo-controlled trial. Journal of Psychopharmacology, 2022, 36, 1136-1145.	4.0	5
9	Dysregulation of the histone demethylase KDM6B in alcohol dependence is associated with epigenetic regulation of inflammatory signaling pathways. Addiction Biology, 2021, 26, e12816.	2.6	28
10	Calcium Carbonate Attenuates Withdrawal and Reduces Craving: A Randomized Controlled Trial in Alcohol-Dependent Patients. European Addiction Research, 2021, 27, 332-340.	2.4	4
11	FMRI-based prediction of naltrexone response in alcohol use disorder: a replication study. European Archives of Psychiatry and Clinical Neuroscience, 2021, 271, 915-927.	3.2	11
12	Baseline severity and the prediction of placebo response in clinical trials for alcohol dependence: A metaâ€regression analysis to develop an enrichment strategy. Alcoholism: Clinical and Experimental Research, 2021, 45, 1722-1734.	2.4	12
13	Alcohol and sweet reward are encoded by distinct meta-ensembles. Neuropharmacology, 2021, 195, 108496.	4.1	10
14	Neuroimaging reveals functionally distinct neuronal networks associated with high-level alcohol consumption in two genetic rat models. Behavioural Pharmacology, 2021, 32, 229-238.	1.7	3
15	Psilocybin targets a common molecular mechanism for cognitive impairment and increased craving in alcoholism. Science Advances, 2021, 7, eabh2399.	10.3	39
16	Incubation of neural alcohol cue reactivity after withdrawal and its blockade by naltrexone. Addiction Biology, 2020, 25, e12717.	2.6	57
17	Aberrant insular cortex connectivity in abstinent alcoholâ€dependent rats is reversed by dopamine D3 receptor blockade. Addiction Biology, 2020, 25, e12744.	2.6	16
18	Addiction Research Consortium: Losing and regaining control over drug intake (ReCoDe)—From trajectories to mechanisms and interventions. Addiction Biology, 2020, 25, e12866.	2.6	135

#	Article	IF	CITATIONS
19	Impulsivity is a heritable trait in rodents and associated with a novel quantitative trait locus on chromosome 1. Scientific Reports, 2020, 10, 6684.	3.3	8
20	Anterior insula stimulation suppresses appetitive behavior while inducing forebrain activation in alcohol-preferring rats. Translational Psychiatry, 2020, 10, 150.	4.8	41
21	The IMAGEN study: a decade of imaging genetics in adolescents. Molecular Psychiatry, 2020, 25, 2648-2671.	7.9	46
22	Chronic alcohol consumption alters extracellular space geometry and transmitter diffusion in the brain. Science Advances, 2020, 6, eaba0154.	10.3	34
23	Interaction between behavioral inhibition and neural alcohol cue-reactivity in ADHD and alcohol use disorder. Psychopharmacology, 2020, 237, 1691-1707.	3.1	16
24	SA64DIFFERENTIAL DNA METHYLATION OF GDAP1 AND HECW2 IN POST MORTEM BRAIN SAMPLES AND IN A RAT MODEL FOR ALCOHOL DEPENDENCE. European Neuropsychopharmacology, 2019, 29, S1222-S1223.	0.7	0
25	Developing neuroscience-based treatments for alcohol addiction: A matter of choice?. Translational Psychiatry, 2019, 9, 255.	4.8	65
26	Detecting Alcohol-Induced Brain Damage Noninvasively Using Diffusion Tensor Imaging. ACS Chemical Neuroscience, 2019, 10, 4187-4189.	3.5	8
27	Neural Correlates of Failed Inhibitory Control as an Early Marker of Disordered Eating in Adolescents. Biological Psychiatry, 2019, 85, 956-965.	1.3	29
28	Microstructural White Matter Alterations in Men With Alcohol Use Disorder and Rats With Excessive Alcohol Consumption During Early Abstinence. JAMA Psychiatry, 2019, 76, 749.	11.0	41
29	Dopamine and opioid systems adaptation in alcoholism revisited: Convergent evidence from positron emission tomography and postmortem studies. Neuroscience and Biobehavioral Reviews, 2019, 106, 141-164.	6.1	32
30	Choice for Drug or Natural Reward Engages Largely Overlapping Neuronal Ensembles in the Infralimbic Prefrontal Cortex. Journal of Neuroscience, 2018, 38, 3507-3519.	3.6	42
31	Dynorphin and κ-Opioid Receptor Dysregulation in the Dopaminergic Reward System of Human Alcoholics. Molecular Neurobiology, 2018, 55, 7049-7061.	4.0	27
32	Targeted overexpression of CRH receptor subtype 1 in central amygdala neurons: effect on alcohol-seeking behavior. Psychopharmacology, 2018, 235, 1821-1833.	3.1	15
33	Oxytocin Reduces Alcohol Cue-Reactivity in Alcohol-Dependent Rats and Humans. Neuropsychopharmacology, 2018, 43, 1235-1246.	5.4	85
34	Methylation of <i><scp>OPRL</scp>1</i> mediates the effect of psychosocial stress on binge drinking in adolescents. Journal of Child Psychology and Psychiatry and Allied Disciplines, 2018, 59, 650-658.	5.2	10
35	Glutamate concentration in the anterior cingulate cortex in alcohol dependence. Psychiatric Genetics, 2018, 28, 94-95.	1.1	6
36	Efficacy and safety of sodium oxybate in alcoholâ€dependent patients with a very high drinking risk level. Addiction Biology, 2018, 23, 969-986.	2.6	59

#	Article	IF	CITATIONS
37	The SyBil-AA real-time fMRI neurofeedback study: protocol of a single-blind randomized controlled trial in alcohol use disorder. BMC Psychiatry, 2018, 18, 12.	2.6	9
38	Multi-modal MRI classifiers identify excessive alcohol consumption and treatment effects in the brain. Addiction Biology, 2017, 22, 1459-1472.	2.6	17
39	Negative Association Between <scp>MR</scp> ‧pectroscopic Glutamate Markers and Gray Matter Volume After Alcohol Withdrawal in the Hippocampus: A Translational Study in Humans and Rats. Alcoholism: Clinical and Experimental Research, 2017, 41, 323-333.	2.4	23
40	Deep grey matter iron accumulation in alcohol use disorder. NeuroImage, 2017, 148, 115-122.	4.2	27
41	Differential Roles for L-Type Calcium Channel Subtypes in Alcohol Dependence. Neuropsychopharmacology, 2017, 42, 1058-1069.	5.4	35
42	Early rearing history influences oxytocin receptor epigenetic regulation in rhesus macaques. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 11769-11774.	7.1	49
43	Altered communication of mPFC neuronal networks in postdependent rats state. Alcohol, 2017, 60, 211.	1.7	0
44	Development of functional and structural brain alterations in logitudinal models of high alcohol consumption and abstinence. Alcohol, 2017, 60, 215.	1.7	0
45	Evaluating network brain connectivity in alcohol postdependent state using Network-Based Statistic. , 2017, 2017, 533-536.		2
46	Low μ-Opioid Receptor Status in Alcohol Dependence Identified by Combined Positron Emission Tomography and Post-Mortem Brain Analysis. Neuropsychopharmacology, 2017, 42, 606-614.	5.4	51
47	Reprogramming of <scp>mPFC</scp> transcriptome and function in alcohol dependence. Genes, Brain and Behavior, 2017, 16, 86-100.	2.2	38
48	Genetic Contribution to Alcohol Dependence: Investigation of a Heterogeneous German Sample of Individuals with Alcohol Dependence, Chronic Alcoholic Pancreatitis, and Alcohol-Related Cirrhosis. Genes, 2017, 8, 183.	2.4	11
49	A gene-by-sex interaction for nicotine reward: evidence from humanized mice and epidemiology. Translational Psychiatry, 2016, 6, e861-e861.	4.8	16
50	Modulation of nucleus accumbens connectivity by alcohol drinking and naltrexone in alcohol-preferring rats: A manganese-enhanced magnetic resonance imaging study. European Neuropsychopharmacology, 2016, 26, 445-455.	0.7	15
51	Neural basis of reward anticipation and its genetic determinants. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 3879-3884.	7.1	53
52	Convergent evidence from alcohol-dependent humans and rats for a hyperdopaminergic state in protracted abstinence. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 3024-3029.	7.1	127
53	mRNA GPR162 changes are associated with decreased food intake in rat, and its human genetic variants with impairments in glucose homeostasis in two Swedish cohorts. Gene, 2016, 581, 139-145.	2.2	5
54	The Calpain Inhibitor A-705253 Attenuates Alcohol-Seeking and Relapse with Low Side-Effect Profile. Neuropsychopharmacology, 2016, 41, 979-988.	5.4	10

#	Article	IF	CITATIONS
55	A translational systems biology approach in both animals and humans identifies a functionally related module of accumbal genes involved in the regulation of reward processing and binge drinking in males. Journal of Psychiatry and Neuroscience, 2016, 41, 192-202.	2.4	16
56	Alcohol: Neurobiology of Alcohol Addiction. , 2016, , 3593-3623.		0
57	Resilience and corpus callosum microstructure in adolescence. Psychological Medicine, 2015, 45, 2285-2294.	4.5	45
58	The Need for Treatment Responsive Translational Biomarkers in Alcoholism Research. Current Topics in Behavioral Neurosciences, 2015, 28, 151-171.	1.7	35
59	Association of Protein Phosphatase <i>PPM1G</i> With Alcohol Use Disorder and Brain Activity During Behavioral Control in a Genome-Wide Methylation Analysis. American Journal of Psychiatry, 2015, 172, 543-552.	7.2	68
60	The Neurometabolic Fingerprint of Excessive Alcohol Drinking. Neuropsychopharmacology, 2015, 40, 1259-1268.	5.4	24
61	A common functional allele of the Nogo receptor gene, reticulon 4 receptor (RTN4R), is associated with sporadic amyotrophic lateral sclerosis in a French population. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2015, 16, 490-496.	1.7	6
62	Losing Control: Excessive Alcohol Seeking after Selective Inactivation of Cue-Responsive Neurons in the Infralimbic Cortex. Journal of Neuroscience, 2015, 35, 10750-10761.	3.6	118
63	Increased mesolimbic cue-reactivity in carriers of the mu-opioid-receptor gene OPRM1 A118G polymorphism predicts drinking outcome: A functional imaging study in alcohol dependent subjects. European Neuropsychopharmacology, 2015, 25, 1128-1135.	0.7	46
64	Rsu1 regulates ethanol consumption in <i>Drosophila</i> and humans. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E4085-93.	7.1	57
65	The Brain's Response to Reward Anticipation and Depression in Adolescence: Dimensionality, Specificity, and Longitudinal Predictions in a Community-Based Sample. American Journal of Psychiatry, 2015, 172, 1215-1223.	7.2	237
66	A Pharmacogenetic Determinant of Mu-Opioid Receptor Antagonist Effects on Alcohol Reward and Consumption: Evidence from Humanized Mice. Biological Psychiatry, 2015, 77, 850-858.	1.3	56
67	XRCC5 as a Risk Gene for Alcohol Dependence: Evidence from a Genome-Wide Gene-Set-Based Analysis and Follow-up Studies in Drosophila and Humans. Neuropsychopharmacology, 2015, 40, 361-371.	5.4	12
68	Brain activation induced by voluntary alcohol and saccharin drinking in rats assessed with manganese-enhanced magnetic resonance imaging. Addiction Biology, 2015, 20, 1012-1021.	2.6	39
69	Postdependent state in rats as a model for medication development in alcoholism. Addiction Biology, 2015, 20, 1-21.	2.6	72
70	Personality, Attentional Biases towards Emotional Faces and Symptoms of Mental Disorders in an Adolescent Sample. PLoS ONE, 2015, 10, e0128271.	2,5	10
71	Dopamine systems adaptation during acquisition and consolidation of a skill. Frontiers in Integrative Neuroscience, 2014, 8, 87.	2.1	31
72	DRD2/ANKK1 Polymorphism Modulates the Effect of Ventral Striatal Activation on Working Memory Performance. Neuropsychopharmacology, 2014, 39, 2357-2365.	5.4	31

#	Article	IF	CITATIONS
73	White-matter microstructure and gray-matter volumes in adolescents with subthreshold bipolar symptoms. Molecular Psychiatry, 2014, 19, 462-470.	7.9	37
74	Global Genetic Variations Predict Brain Response to Faces. PLoS Genetics, 2014, 10, e1004523.	3.5	18
75	Neuropsychosocial profiles of current and future adolescent alcohol misusers. Nature, 2014, 512, 185-189.	27.8	368
76	Behavioral Neurobiology of Alcohol Addiction. Current Topics in Behavioral Neurosciences, 2013, 13, v-vii.	1.7	13
77	β-Arrestin 2 knockout mice exhibit sensitized dopamine release and increased reward in response to a low dose of alcohol. Psychopharmacology, 2013, 230, 439-449.	3.1	18
78	Comparison of gene expression profiles in the blood, hippocampus and prefrontal cortex of rats. In Silico Pharmacology, 2013, 1, 15.	3.3	39
79	A systems medicine research approach for studying alcohol addiction. Addiction Biology, 2013, 18, 883-896.	2.6	76
80	Neurobiology of Alcohol Addiction. , 2013, , 2745-2773.		0
81	Rescue of Infralimbic mGluR ₂ Deficit Restores Control Over Drug-Seeking Behavior in Alcohol Dependence. Journal of Neuroscience, 2013, 33, 2794-2806.	3.6	148
82	Coordinated dysregulation of mRNAs and microRNAs in the rat medial prefrontal cortex following a history of alcohol dependence. Pharmacogenomics Journal, 2013, 13, 286-296.	2.0	87
83	<i>RASCRF2</i> regulates alcohol-induced reinforcement by influencing mesolimbic dopamine neuron activity and dopamine release. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 21128-21133.	7.1	90
84	Translational Magnetic Resonance Spectroscopy Reveals Excessive Central Glutamate Levels During Alcohol Withdrawal in Humans and Rats. Biological Psychiatry, 2012, 71, 1015-1021.	1.3	173
85	Increased mRNA Levels of <i>TCF7L2</i> and <i>MYC</i> of the Wnt Pathway in Tg-ArcSwe Mice and Alzheimer's Disease, 2011, 2011, 1-7.	2.0	15
86	The G protein coupled receptor Gpr153 shares common evolutionary origin with Gpr162 and is highly expressed in central regions including the thalamus, cerebellum and the arcuate nucleus. FEBS Journal, 2011, 278, 4881-4894.	4.7	20
87	A genetic determinant of the striatal dopamine response to alcohol in men. Molecular Psychiatry, 2011, 16, 809-817.	7.9	284
88	The 2010 Most Influential Bioelectromagnetics Journal Paper by Citation Award to Dr. Igor Belyaev, Dr. Catrin Baureus Koch, Dr. Olle Terenius, Dr. Katarina Roxstrom-Lindquist, Dr. Lars Malmgren, Dr. Wolfgang Sommer, Dr. Leif Salford, and Dr. Bertil Persso. Bioelectromagnetics, 2011, 32, 333-333.	1.6	0
89	Dissociation of antidepressant-like activity of escitalopram and nortriptyline on behaviour and hippocampal BDNF expression in female rats. Journal of Psychopharmacology, 2011, 25, 1378-1387.	4.0	22
90	Genome-wide association and genetic functional studies identify <i>autism susceptibility candidate 2</i> gene (<i>AUTS2</i>) in the regulation of alcohol consumption. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 7119-7124.	7.1	258

#	Article	IF	CITATIONS
91	Pharmacological Consequence of the A118G μ Opioid Receptor Polymorphism on Morphine- and Fentanyl-mediated Modulation of Ca2+Channels in Humanized Mouse Sensory Neurons. Anesthesiology, 2011, 115, 1054-1062.	2.5	58
92	Functional <i>NPY</i> Variation as a Factor in Stress Resilience and Alcohol Consumption in Rhesus Macaques. Archives of General Psychiatry, 2010, 67, 423.	12.3	62
93	Neuropeptide Y (NPY) suppresses yohimbine-induced reinstatement of alcohol seeking. Psychopharmacology, 2010, 208, 417-426.	3.1	71
94	Human NPY promoter variation rs16147:T>C as a moderator of prefrontal NPY gene expression and negative affect. Human Mutation, 2010, 31, E1594-E1608.	2.5	90
95	Translating the neuroscience of alcoholism into clinical treatments: From blocking the buzz to curing the blues. Neuroscience and Biobehavioral Reviews, 2010, 35, 334-344.	6.1	109
96	PRECLINICAL STUDY: FULL ARTICLE: Ethanolâ€induced activation of AKT and DARPPâ€32 in the mouse striatum mediated by opioid receptors. Addiction Biology, 2010, 15, 299-303.	2.6	26
97	An integrated genome research network for studying the genetics of alcohol addiction. Addiction Biology, 2010, 15, 369-379.	2.6	57
98	Long-term suppression of forebrain neurogenesis and loss of neuronal progenitor cells following prolonged alcohol dependence in rats. International Journal of Neuropsychopharmacology, 2010, 13, 583-593.	2.1	73
99	Genetic Variation and Brain Gene Expression in Rodent Models of Alcoholism. International Review of Neurobiology, 2010, 91, 129-171.	2.0	32
100	Glycine Transporter-1 Blockade Leads to Persistently Reduced Relapse-like Alcohol Drinking in Rats. Biological Psychiatry, 2010, 68, 704-711.	1.3	73
101	Functional <i>CRH</i> variation increases stress-induced alcohol consumption in primates. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 14593-14598.	7.1	79
102	Genome-wide Association Study of Alcohol Dependence. Archives of General Psychiatry, 2009, 66, 773.	12.3	354
103	Acute ethanol challenge inhibits glycogen synthase kinase-3β in the rat prefrontal cortex. International Journal of Neuropsychopharmacology, 2009, 12, 275.	2.1	23
104	Targeting brain angiotensin and corticotrophin-releasing hormone systems interaction for the treatment of mood and alcohol use disorders. Journal of Molecular Medicine, 2008, 86, 723-728.	3.9	17
105	Neuroplasticity in brain reward circuitry following a history of ethanol dependence. European Journal of Neuroscience, 2008, 27, 1912-1922.	2.6	82
106	PRECLINICAL STUDY: Longâ€lasting tolerance to alcohol following a history of dependence. Addiction Biology, 2008, 13, 26-30.	2.6	37
107	Upregulation of Voluntary Alcohol Intake, Behavioral Sensitivity to Stress, and Amygdala Crhr1 Expression Following a History of Dependence. Biological Psychiatry, 2008, 63, 139-145.	1.3	294
108	Dysregulation of Nociceptin/Orphanin FQ Activity in the Amygdala Is Linked to Excessive Alcohol Drinking in the Rat. Biological Psychiatry, 2008, 64, 211-218.	1.3	115

#	Article	IF	CITATIONS
109	Modulation of voluntary ethanol consumption by betaâ€arrestin 2. FASEB Journal, 2008, 22, 2552-2560.	0.5	39
110	Genetic Impairment of Frontocortical Endocannabinoid Degradation and High Alcohol Preference. Neuropsychopharmacology, 2007, 32, 117-126.	5.4	147
111	Buprenorphine Reduces Alcohol Drinking Through Activation of the Nociceptin/Orphanin FQ-NOP Receptor System. Biological Psychiatry, 2007, 61, 4-12.	1.3	85
112	Region-specific down-regulation of Crhr1 gene expression in alcohol-preferring msP rats following ad lib access to alcohol. Addiction Biology, 2007, 12, 30-34.	2.6	81
113	Plasticity and impact of the central renin–angiotensin system during development of ethanol dependence. Journal of Molecular Medicine, 2007, 85, 1089-1097.	3.9	19
114	The alcohol-preferring AA and alcohol-avoiding ANA rats: neurobiology of the regulation of alcohol drinking. Addiction Biology, 2006, 11, 289-309.	2.6	139
115	Corticosterone Actions on the Hippocampal Brain-Derived Neurotrophic Factor Expression are Mediated by Exon IV Promoter. Journal of Neuroendocrinology, 2006, 18, 104-114.	2.6	88
116	Exposure of rat brain to 915 MHz GSM microwaves induces changes in gene expression but not double stranded DNA breaks or effects on chromatin conformation. Bioelectromagnetics, 2006, 27, 295-306.	1.6	108
117	Glutathioneâ€5â€ŧransferase expression in the brain: possible role in ethanol preference and longevity. FASEB Journal, 2006, 20, 1826-1835.	0.5	41
118	Variation at the rat Crhr1 locus and sensitivity to relapse into alcohol seeking induced by environmental stress. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 15236-15241.	7.1	246
119	DNA Microarrays and Expression Profiling in Drug Abuse Research. Addiction Biology, 2005, 10, 1-3.	2.6	7
120	The Search for Candidate Genes of Alcoholism: Evidence from Expression Profiling Studies. Addiction Biology, 2005, 10, 71-79.	2.6	29
121	Cannabinoid CB1 receptor antagonism reduces conditioned reinstatement of ethanol-seeking behavior in rats. European Journal of Neuroscience, 2005, 21, 2243-2251.	2.6	135
122	Expression Profiling in Alcoholism Research. Alcoholism: Clinical and Experimental Research, 2005, 29, 1066-1073.	2.4	6
123	Gene discovery in neuropharmacological and behavioral studies using Affymetrix microarray data. Methods, 2005, 37, 219-228.	3.8	25
124	Transcription factor gene expression profiling after acute intermittent nicotine treatment in the rat cerebral cortex. Neuroscience, 2005, 133, 787-796.	2.3	37
125	A cluster of differentially expressed signal transduction genes identified by microarray analysis in a rat genetic model of alcoholism. Pharmacogenomics Journal, 2004, 4, 208-218.	2.0	50
126	c-fos antisense oligonucleotides increase firing rate of striatal neurons in the anaesthetized rat. Brain Research, 2004, 1000, 192-194.	2.2	4

#	Article	IF	CITATIONS
127	Functional genomics strategies to identify susceptibility genes and treatment targets in alcohol dependence. Neurotoxicity Research, 2004, 6, 363-372.	2.7	6
128	High trait anxiety and hyporeactivity to stress of the dorsomedial prefrontal cortex: a combined phMRI and Fos study in rats. NeuroImage, 2004, 23, 382-391.	4.2	67
129	Persistent behavioral and autonomic supersensitivity to stress following prenatal stress exposure in rats. Behavioural Brain Research, 2003, 140, 75-80.	2.2	37
130	A temporal threshold for induction of persistent alcohol preference: behavioral evidence in a rat model of intermittent intoxication Journal of Studies on Alcohol and Drugs, 2003, 64, 445-449.	2.3	87
131	Longâ€lasting increase in voluntary ethanol consumption and transcriptional regulation in the rat brain after intermittent exposure to alcohol. FASEB Journal, 2002, 16, 27-35.	0.5	306
132	Anxiogenic-like action of centrally administered glucagon-like peptide-1 in a punished drinking test. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2002, 26, 119-122.	4.8	43
133	Induction of hippocampal glial cells expressing basic fibroblast growth factor RNA by corticosterone. NeuroReport, 2001, 12, 141-145.	1.2	4
134	Differential expression of diacylglycerol kinase iota and L18A mRNAs in the brains of alcohol-preferring AA and alcohol-avoiding ANA rats. Molecular Psychiatry, 2001, 6, 103-108.	7.9	27
135	CNS expression of diacylglycerol kinase iota and L18A mRNAs. Molecular Psychiatry, 2001, 6, 5-5.	7.9	1
136	Differential Expression of NPY and Its Receptors in Alcohol-Preferring AA and Alcohol-Avoiding ANA Rats. Alcoholism: Clinical and Experimental Research, 2001, 25, 1564-1569.	2.4	81
137	Local 5,7-Dihydroxytryptamine Lesions of Rat Amygdala Release of Punished Drinking, Unaffected Plus-Maze Behavior and Ethanol Consumption. Neuropsychopharmacology, 2001, 24, 430-440.	5.4	41
138	[19] Pharmacokinetic properties of oligonucleotides in brain. Methods in Enzymology, 2000, 314, 261-275.	1.0	5
139	Gluco―and mineralocorticoid receptorâ€mediated regulation of neurotrophic factor gene expression in the dorsal hippocampus and the neocortex of the rat. European Journal of Neuroscience, 2000, 12, 2918-2934.	2.6	119
140	Site-Specific Administration of Antisense Oligonucleotides using Biodegradable Polymer Microspheres Provides Sustained Delivery and Improved Subcellular Biodistribution in the Neostriatum of the Rat Brain. Journal of Drug Targeting, 2000, 8, 319-334.	4.4	24
141	Anxiogenic-Like Action of Galanin after Intra-Amygdala Administration in the Rat. Neuropsychopharmacology, 1999, 21, 507-512.	5.4	102
142	Suppressed neuropeptide Y (NPY) mRNA in rat amygdala following restraint stress. Regulatory Peptides, 1998, 75-76, 247-254.	1.9	90
143	The Spread and Uptake Pattern of Intracerebrally Administered Oligonucleotides in Nerve and Glial Cell Populations of the Rat Brain. Oligonucleotides, 1998, 8, 75-85.	4.3	21
144	Existence of striatal nerve cells coexpressing CCKB and D2 receptor mRNAs. NeuroReport, 1998, 9, 2035-2038.	1.2	3

#	Article	IF	CITATIONS
145	Tissue Distribution, Cellular Uptake, and Intracellular Localization and Stability of Centrally Administered Oligonucleotides in the Brain: Implications for Behavioral and Physiological Effects of Antisense Oligonucleotides. Perspectives in Antisense Science, 1998, , 9-26.	0.2	0
146	On the role of c-fos expression in striatal transmission. The antisense oligonucleotide approach. Neurochemistry International, 1997, 31, 425-436.	3.8	11
147	Decreased experimental anxiety and voluntary ethanol consumption in rats following central but not basolateral amygdala lesions. Brain Research, 1997, 760, 94-101.	2.2	199
148	Intrastriatally injected c-fos antisense oligonucleotide interferes with striatonigral but not striatopallidal Â-aminobutyric acid transmission in the conscious rat. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 14134-14139.	7.1	43
149	[5] Stable high-level gene expression in mammalian cells by T7 phage RNA polymerase. Methods in Enzymology, 1993, 217, 47-66.	1.0	20
150	Antisense oligonucleotide to c-fos induces ipsilateral rotational behaviour to d-amphetamine. NeuroReport, 1993, 5, 277-280.	1.2	80
151	A Model Guided Approach to Evoke Homogeneous Behavior During Temporal Reward and Loss Discounting. Frontiers in Psychiatry, 0, 13, .	2.6	2