Paul H Rekemeyer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5220623/publications.pdf

Version: 2024-02-01

1040056 1281871 14 590 9 11 citations h-index g-index papers 14 14 14 1333 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	ZnO Nanowire Arrays for Enhanced Photocurrent in PbS Quantum Dot Solar Cells. Advanced Materials, 2013, 25, 2790-2796.	21.0	251
2	Silicon-in-silica spheres via axial thermal gradient in-fibre capillary instabilities. Nature Communications, 2013, 4, 2216.	12.8	90
3	Enhanced Photocurrent in PbS Quantum Dot Photovoltaics via ZnO Nanowires and Band Alignment Engineering. Advanced Energy Materials, 2016, 6, 1600848.	19.5	66
4	Simultaneous high crystallinity and sub-bandgap optical absorptance in hyperdoped black silicon using nanosecond laser annealing. Journal of Applied Physics, 2015, 118, .	2.5	45
5	Thermal properties of mid-infrared colloidal quantum dot detectors. Journal of Applied Physics, 2011 , 110 , .	2.5	43
6	Minority Carrier Transport in Lead Sulfide Quantum Dot Photovoltaics. Nano Letters, 2017, 17, 6221-6227.	9.1	33
7	A Two-Step Absorber Deposition Approach To Overcome Shunt Losses in Thin-Film Solar Cells: Using Tin Sulfide as a Proof-of-Concept Material System. ACS Applied Materials & Samp; Interfaces, 2016, 8, 22664-22670.	8.0	22
8	Dimension- and Surface-Tailored ZnO Nanowires Enhance Charge Collection in Quantum Dot Photovoltaic Devices. ACS Applied Energy Materials, 2018, 1, 1815-1822.	5.1	21
9	Improved efficiency in organic/inorganic hybrid solar cells by interfacial modification of ZnO nanowires with small molecules. Journal Physics D: Applied Physics, 2014, 47, 394016.	2.8	9
10	Effects of Voltage Biasing on Current Extraction in Perovskite Solar Cells. Advanced Energy Materials, 2018, 8, 1701378.	19.5	7
11	ZnO Nanowire Arrays for Enhanced Photocurrent in PbS Quantum Dot Solar Cells (Adv. Mater.) Tj ETQq1 1 0.784	-314 rgBT 21.0	/Oyerlock 10
12	Device engineering towards improved tin sulfide solar cell performance and performance reproducibility. , 2016 , , .		1
13	Improvement of minority-carrier lifetime in tin monosulfide via substrate engineering. , 2016, , .		0
14	Nanowire-Based Bulk Heterojunction Solar Cells. Semiconductors and Semimetals, 2018, , 479-527.	0.7	0