Mark E Rentschler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5220596/publications.pdf

Version: 2024-02-01

104 papers 1,826 citations

236925 25 h-index 330143 37 g-index

104 all docs

104 docs citations

104 times ranked 1296 citing authors

#	Article	IF	CITATIONS
1	A Tribometric Device for the Rolling Contact of Soft Elastomers. Tribology Letters, 2022, 70, 1.	2.6	2
2	Electro-Hydraulic Rolling Soft Wheel: Design, Hybrid Dynamic Modeling, and Model Predictive Control. IEEE Transactions on Robotics, 2022, 38, 3044-3063.	10.3	8
3	Local lateral contact governs shear traction of micropatterned surfaces on hydrogel substrates. Science Advances, 2022, 8, .	10.3	2
4	Miniaturized Circuitry for Capacitive Self-Sensing and Closed-Loop Control of Soft Electrostatic Transducers. Soft Robotics, 2021, 8, 673-686.	8.0	19
5	A Real-Time State Dependent Region Estimator for Autonomous Endoscope Navigation. IEEE Transactions on Robotics, 2021, 37, 918-934.	10.3	17
6	Enabling Autonomous Colonoscopy Intervention Using a Robotic Endoscope Platform. IEEE Transactions on Biomedical Engineering, 2021, 68, 1957-1968.	4.2	12
7	Nonlinear Dynamic Modeling of a Robotic Endoscopy Platform on Synthetic Tissue Substrates. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, 2021, 143, .	1.6	1
8	Novel Optimization-Based Design and Surgical Evaluation of a Treaded Robotic Capsule Colonoscope. IEEE Transactions on Robotics, 2020, 36, 545-552.	10.3	34
9	Friction between a plane strain circular indenter and a thick poroelastic substrate. Mechanics of Materials, 2020, 142, 103303.	3.2	4
10	Patterned enteroscopy balloon design factors influence tissue anchoring. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 111, 103966.	3.1	3
11	Identification and Control of a Nonlinear Soft Actuator and Sensor System. IEEE Robotics and Automation Letters, 2020, 5, 3783-3790.	5.1	17
12	The role of prototypes in communication between stakeholders. Design Studies, 2020, 66, 1-34.	3.1	46
13	Comparing Visual Odometry Systems in Actively Deforming Simulated Colon Environments. , 2020, , .		2
14	Three-Dimensional Microscale Imaging and Measurement of Soft Material Contact Interfaces under Quasi-Static Normal Indentation and Shear. Langmuir, 2019, 35, 10725-10733.	3.5	9
15	Delamination of a rigid punch from an elastic substrate under normal and shear forces. Journal of the Mechanics and Physics of Solids, 2019, 122, 141-160.	4.8	27
16	A representative volume element model for the adhesion between a micro-pillared surface and a compliant substrate. Mechanics of Materials, 2018, 119, 65-73.	3.2	6
17	Autonomous Localization, Navigation and Haustral Fold Detection for Robotic Endoscopy. , 2018, , .		12
18	A Platform for Developing Robotic Navigation Strategies in a Deformable, Dynamic Environment. IEEE Robotics and Automation Letters, 2018, 3, 2670-2677.	5.1	16

#	Article	IF	CITATIONS
19	A Modular Endoscopy Simulation Apparatus (MESA) for Robotic Medical Device Sensing and Control Validation. IEEE Robotics and Automation Letters, 2018, 3, 4054-4061.	5.1	11
20	Energy-Based Tissue Fusion for Sutureless Closure: Applications, Mechanisms, and Potential for Functional Recovery. Annual Review of Biomedical Engineering, 2018, 20, 1-20.	12.3	26
21	Characterizing Adhesion between a Micropatterned Surface and a Soft Synthetic Tissue. Langmuir, 2017, 33, 854-864.	3.5	15
22	SRAL: Shared Representative Appearance Learning for Long-Term Visual Place Recognition. IEEE Robotics and Automation Letters, 2017, 2, 1172-1179.	5.1	36
23	Positioning Performance of Power and Manual Drivers in Posterior Spinal Fusion Procedures. Applied Bionics and Biomechanics, 2017, 2017, 1-9.	1.1	1
24	Design, modeling and control of a SMA-actuated biomimetic robot with novel functional skin., 2017,,.		40
25	Towards autonomous motion control in minimally invasive robotic surgery. Expert Review of Medical Devices, 2016, 13, 741-748.	2.8	15
26	A Novel Parameter for Predicting Arterial Fusion and Cutting in Finite Element Models. Annals of Biomedical Engineering, 2016, 44, 3295-3306.	2.5	9
27	Strength and Persistence of Energy-Based Vessel Seals Rely on Tissue Water and Glycosaminoglycan Content. Annals of Biomedical Engineering, 2016, 44, 3421-3431.	2.5	5
28	A new 3-dimensional method for measuring precision in surgical navigation and methods to optimize navigation accuracy. European Spine Journal, 2016, 25, 1764-1774.	2.2	36
29	Frictional resistance model for tissue-capsule endoscope sliding contact in the gastrointestinal tract. Tribology International, 2016, 102, 472-484.	5.9	42
30	Intestinal Manometry Force Sensor for Robotic Capsule Endoscopy: An Acute, Multipatient In vivo Animal and Human Study. IEEE Transactions on Biomedical Engineering, 2016, 63, 943-951.	4.2	4
31	The role of glycosaminoglycans in tissue adhesion during energy-based vessel sealing., 2015,,.		0
32	An Automated Traction Measurement Platform and Empirical Model for Evaluation of Rolling Micropatterned Wheels. IEEE/ASME Transactions on Mechatronics, 2015, 20, 1854-1862.	5.8	19
33	A novel parameter for predicting arterial fusion and ablation in finite element models. , 2015, , .		0
34	Benchtop Testing of a Novel Robotic Capsule With Differential Drive Capabilities 1. Journal of Medical Devices, Transactions of the ASME, 2015, 9, .	0.7	0
35	Bond Strength of Thermally Fused Vascular Tissue Varies With Apposition Force. Journal of Biomechanical Engineering, 2015, 137, 121010.	1.3	3
36	Tissue storage ex vivo significantly increases vascular fusion bursting pressure. Surgical Endoscopy and Other Interventional Techniques, 2015, 29, 1999-2005.	2.4	6

#	Article	IF	Citations
37	Magnetically driven medical devices: a review. Expert Review of Medical Devices, 2015, 12, 737-752.	2.8	56
38	A preconditioning protocol and biaxial mechanical measurement of the small intestine. International Journal of Experimental and Computational Biomechanics, 2014, 2, 293.	0.4	7
39	Tissue Bond Strength as a Function of Applied Fusion Pressure1. Journal of Medical Devices, Transactions of the ASME, 2014, 8, .	0.7	5
40	Biocompatibility and tissue integration of a novel shape memory surgical mesh for ventral hernia: In vivo animal studies. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2014, 102, 1093-1100.	3.4	12
41	Wireless Tissue Palpation for Intraoperative Detection of Lumps in the Soft Tissue. IEEE Transactions on Biomedical Engineering, 2014, 61, 353-361.	4.2	64
42	Soft material adhesion characterization for in vivo locomotion of robotic capsule endoscopes: Experimental and modeling results. Journal of the Mechanical Behavior of Biomedical Materials, 2014, 39, 257-269.	3.1	11
43	Evaluating temperature and duration in arterial tissue fusion to maximize bond strength. Journal of the Mechanical Behavior of Biomedical Materials, 2014, 30, 41-49.	3.1	18
44	Temperature Measurement Methods During Direct Heat Arterial Tissue Fusion. IEEE Transactions on Biomedical Engineering, 2013, 60, 2552-2558.	4.2	17
45	Preliminary Friction Force Measurements on Small Bowel Lumen When Eliminating Sled Edge Effects. Tribology Letters, 2013, 51, 377-383.	2.6	14
46	Measurements of the contact force from myenteric contractions on a solid bolus. Journal of Robotic Surgery, 2013, 7, 53-57.	1.8	17
47	A quasi-static model of wheel–tissue interaction for surgical robotics. Medical Engineering and Physics, 2013, 35, 1368-1376.	1.7	5
48	A quantitative comparison of soft tissue compressive viscoelastic model accuracy. Journal of the Mechanical Behavior of Biomedical Materials, 2013, 20, 126-136.	3.1	51
49	A tribological investigation of the small bowel lumen surface. Tribology International, 2013, 62, 171-176.	5. 9	16
50	Wireless tissue palpation: Proof of concept for a single degree of freedom., 2013,,.		18
51	Preliminary experimental results and modeling for a four degree of freedom automated traction measurement platform for quantitative evaluation of in vivo robotic capsule colonoscopy mobility effectiveness., 2013,,.		3
52	Tissue fusion bursting pressure and the role of tissue water content. Proceedings of SPIE, 2013, , .	0.8	7
53	Uniaxial Wireless Tissue Palpation Device for Minimally Invasive Surgery. Journal of Medical Devices, Transactions of the ASME, 2013, 7, .	0.7	1
54	Integrating a novel shape memory polymer into surgical meshes decreases placement time in laparoscopic surgery: An <i>in vitro</i> and acute <i>in vivo</i> study. Journal of Biomedical Materials Research - Part A, 2013, 101A, 2613-2620.	4.0	16

#	Article	IF	CITATIONS
55	Sensor for Measuring the Contact Force From Human Myenteric Contractions for In Vivo Robotic Capsule Endoscope Mobility. Journal of Medical Devices, Transactions of the ASME, 2013, 7, .	0.7	4
56	Single Port Access Surgery With a Novel Port Camera System. Surgical Innovation, 2012, 19, 123-129.	0.9	3
57	The Design and Characterization of a Testing Platform for Quantitative Evaluation of Tread Performance on Multiple Biological Substrates. IEEE Transactions on Biomedical Engineering, 2012, 59, 2524-2530.	4.2	11
58	Small intestine mucosal adhesivity to in vivo capsule robot materials. Journal of the Mechanical Behavior of Biomedical Materials, 2012, 15, 24-32.	3.1	28
59	Surgical evaluation of a novel tethered robotic capsule endoscope using micro-patterned treads. Surgical Endoscopy and Other Interventional Techniques, 2012, 26, 2862-2869.	2.4	70
60	Initial Design and Evaluation of a Pediatric Intra-Cardiac Camera System for Ventricular Septal Defects. Journal of Medical Devices, Transactions of the ASME, 2012, 6, .	0.7	0
61	Single-Port-Access Surgery with a Novel Magnet Camera System. IEEE Transactions on Biomedical Engineering, 2012, 59, 1187-1193.	4.2	39
62	Characterization and Experimental Results of a Novel Sensor for Measuring the Contact Force From Myenteric Contractions. IEEE Transactions on Biomedical Engineering, 2012, 59, 1971-1977.	4.2	12
63	Measurement of Bond Strength of Direct Heat Tissue Fusion in Arteries. , 2012, , .		2
64	Design and Evaluation of a Computer-Controlled Pressure Algometer. Journal of Medical Devices, Transactions of the ASME, $2011, 5, \ldots$	0.7	3
65	Preliminary Mechanical Characterization of the Small Bowel for In Vivo Robotic Mobility. Journal of Biomechanical Engineering, 2011, 133, 091010.	1.3	45
66	Design and Preliminary Evaluation of a Novel Brace for Boutonniere Deformity. Journal of Medical Devices, Transactions of the ASME, 2010, 4, .	0.7	0
67	An Integrated Port Camera and Display System for Laparoscopy. IEEE Transactions on Biomedical Engineering, 2010, 57, 1191-1197.	4.2	14
68	Analysis of Wheel-Tissue Interaction for In Vivo Robotic Mobility. , 2010, , .		0
69	Micropatterned Treads for In Vivo Robotic Mobility. Journal of Medical Devices, Transactions of the ASME, 2010, 4, .	0.7	23
70	Preliminary In Vivo Capsule Crawler Mobility. , 2010, , .		1
71	Preliminary Mechanical Characterization of the Small Bowel for In Vivo Mobility. , 2010, , .		1
72	Initial Design and Evaluation of an Intra-Cardiac Camera System for Ventricular Septal Defects. , 2010, , .		0

#	Article	IF	CITATIONS
73	The development of a material model and wheel–tissue interaction for simulating wheeled surgical robot mobility. Computer Methods in Biomechanics and Biomedical Engineering, 2009, 12, 239-248.	1.6	4
74	Vision and Task Assistance Using Modular Wireless <i>In Vivo</i> Surgical Robots. IEEE Transactions on Biomedical Engineering, 2009, 56, 1700-1710.	4.2	66
75	A Laparoscopic Camera-Enabled Cannula Port. , 2009, , .		0
76	An Improved Splint Design for Boutonniere Deformity. , 2009, , .		0
77	Miniature <i>in vivo</i> Robots for Remote and Harsh Environments. IEEE Transactions on Information Technology in Biomedicine, 2008, 12, 66-75.	3.2	28
78	Microrobot Assisted Laparoscopic Urological Surgery in a Canine Model. Journal of Urology, 2008, 180, 2202-2205.	0.4	20
79	Surgery with cooperative robots. Computer Aided Surgery, 2008, 13, 95-105.	1.8	71
80	Modular Wireless Wheeled In Vivo Surgical Robots. , 2008, , .		0
81	Screening Aortic Drug Treatments Through Arterial Compliance Measurements. Current Vascular Pharmacology, 2008, 6, 250-257.	1.7	5
82	Surgery with cooperative robots. Computer Aided Surgery, 2008, 13, 95-105.	1.8	12
83	A Computational Model for Predicting the Effect of Tire Configuration on Asphaltic Pavement Life. Road Materials and Pavement Design, 2008, 9, 271-289.	4.0	3
84	Towards an in vivo wireless mobile robot for surgical assistance. Studies in Health Technology and Informatics, 2008, 132, 153-8.	0.3	6
85	Medical Therapy Approach for Treating Abdominal Aortic Aneurysm. Vascular, 2007, 15, 361-365.	0.9	5
86	Mechanical Design of Robotic In Vivo Wheeled Mobility. Journal of Mechanical Design, Transactions of the ASME, 2007, 129, 1037-1045.	2.9	27
87	An In Vivo Mobile Robot for Surgical Vision and Task Assistance. Journal of Medical Devices, Transactions of the ASME, 2007, 1, 23-29.	0.7	36
88	Recent in vivo surgical robot and mechanism developments. Surgical Endoscopy and Other Interventional Techniques, 2007, 21, 1477-1481.	2.4	28
89	Natural orifice surgery with an endoluminal mobile robot. Surgical Endoscopy and Other Interventional Techniques, 2007, 21, 1212-1215.	2.4	82
90	The current state of miniature in vivo laparoscopic robotics. Journal of Robotic Surgery, 2007, 1 , 45-49.	1.8	33

#	Article	IF	Citations
91	Preliminary Murine Aortic Tissue Material Properties From Pressure-Diameter Experiments., 2007,,.		O
92	In Vivo Wheeled Robots for Tele-Surgery During Long-Term Space Flight. , 2006, , .		0
93	Modeling, Analysis, and Experimental Study of In Vivo Wheeled Robotic Mobility. IEEE Transactions on Robotics, 2006, 22, 308-321.	10.3	53
94	System Identification of Open-Loop Maneuvers Leads to Improved AUV Flight Performance. IEEE Journal of Oceanic Engineering, 2006, 31, 200-208.	3.8	30
95	In vivo laparoscopic robotics. International Journal of Surgery, 2006, 4, 167-171.	2.7	14
96	Pharmacological Approaches to Prevent Abdominal Aortic Aneurysm Enlargement and Rupture. Annals of the New York Academy of Sciences, 2006, 1085, 39-46.	3.8	20
97	Mobile in vivo camera robots provide sole visual feedback for abdominal exploration and cholecystectomy. Surgical Endoscopy and Other Interventional Techniques, 2006, 20, 135-138.	2.4	74
98	Endoluminal minirobots for transgastric peritoneoscopy. Minimally Invasive Therapy and Allied Technologies, 2006, 15, 384-388.	1.2	18
99	Mobile in vivo biopsy and camera robot. Studies in Health Technology and Informatics, 2006, 119, 449-54.	0.3	14
100	Miniature robots can assist in Laparoscopic cholecystectomy. Surgical Endoscopy and Other Interventional Techniques, 2005, 19, 473-476.	2.4	48
101	In Vivo Robotic Laparoscopy. Surgical Innovation, 2005, 12, 177-181.	0.9	5
102	Toward in vivo mobility. Studies in Health Technology and Informatics, 2005, 111, 397-403.	0.3	2
103	In vivo camera robots provide improved vision for laparoscopic surgery. International Congress Series, 2004, 1268, 787-792.	0.2	9
104	In vivo robots for laparoscopic surgery. Studies in Health Technology and Informatics, 2004, 98, 316-22.	0.3	14