
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5219955/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The ImmGen consortium OpenSource T cell project. Nature Immunology, 2022, 23, 643-644.	14.5	3
2	Tissue-resident memory CD8+ T cells possess unique transcriptional, epigenetic and functional adaptations to different tissue environments. Nature Immunology, 2022, 23, 1121-1131.	14.5	84
3	ld3 expression identifies CD4 ⁺ memory Th1 cells. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	11
4	Hypoxia-inducible factor activity promotes antitumor effector function and tissue residency by CD8+ T cells. Journal of Clinical Investigation, 2021, 131, .	8.2	66
5	Bromodomain protein BRD4 directs and sustains CD8 T cell differentiation during infection. Journal of Experimental Medicine, 2021, 218, .	8.5	19
6	CD8+ T cell metabolism in infection and cancer. Nature Reviews Immunology, 2021, 21, 718-738.	22.7	181
7	Uncoupling of macrophage inflammation from self-renewal modulates host recovery from respiratory viral infection. Immunity, 2021, 54, 1200-1218.e9.	14.3	68
8	Ubiquitin Specific Protease 1 Expression and Function in T Cell Immunity. Journal of Immunology, 2021, 207, 1377-1387.	0.8	3
9	Allelic variation in class I HLA determines CD8 T cell repertoire shape and cross-reactive memory responses to SARS-CoV-2. Science Immunology, 2021, , eabk3070.	11.9	10
10	Delineation of a molecularly distinct terminally differentiated memory CD8 T cell population. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 25667-25678.	7.1	73
11	Heterogeneity and clonal relationships of adaptive immune cells in ulcerative colitis revealed by single-cell analyses. Science Immunology, 2020, 5, .	11.9	127
12	Early precursors and molecular determinants of tissue-resident memory CD8 ⁺ T lymphocytes revealed by single-cell RNA sequencing. Science Immunology, 2020, 5, .	11.9	124
13	Bcl-6 is the nexus transcription factor of T follicular helper cells via repressor-of-repressor circuits. Nature Immunology, 2020, 21, 777-789.	14.5	80
14	ImmGen at 15. Nature Immunology, 2020, 21, 700-703.	14.5	55
15	Reinvigorating NIH Grant Peer Review. Immunity, 2020, 52, 1-3.	14.3	20
16	Heterogenous Populations of Tissue-Resident CD8+ T Cells Are Generated in Response to Infection and Malignancy. Immunity, 2020, 52, 808-824.e7.	14.3	149
17	Remembering to remember: T cell memory maintenance and plasticity. Current Opinion in Immunology, 2019, 58, 89-97.	5.5	46
18	Origins of <scp>CD</scp> 4 ⁺ circulating and tissueâ€resident memory Tâ€cells. Immunology, 2019, 157, 3-12.	4.4	112

#	Article	IF	CITATIONS
19	Antitumour T cells stand the test of time. Nature, 2019, 576, 392-393.	27.8	2
20	Universal Principled Review: A Community-Driven Method to Improve Peer Review. Cell, 2019, 179, 1441-1445.	28.9	6
21	The Transcription Factor Runx3 Establishes Chromatin Accessibility of cis-Regulatory Landscapes that Drive Memory Cytotoxic T Lymphocyte Formation. Immunity, 2018, 48, 659-674.e6.	14.3	129
22	Transcriptional programming of tissue-resident memory CD8+ T cells. Current Opinion in Immunology, 2018, 51, 162-169.	5.5	92
23	Sustained Id2 regulation of E proteins is required for terminal differentiation of effector CD8+ T cells. Journal of Experimental Medicine, 2018, 215, 773-783.	8.5	68
24	Continuous activity of Foxo1 is required to prevent anergy and maintain the memory state of CD8+ T cells. Journal of Experimental Medicine, 2018, 215, 575-594.	8.5	60
25	The Transcription Factor Zfx Regulates Peripheral T Cell Self-Renewal and Proliferation. Frontiers in Immunology, 2018, 9, 1482.	4.8	12
26	Early transcriptional and epigenetic regulation of CD8+ T cell differentiation revealed by single-cell RNA sequencing. Nature Immunology, 2017, 18, 422-432.	14.5	194
27	Metabolic and Epigenetic Coordination of T Cell and Macrophage Immunity. Immunity, 2017, 46, 714-729.	14.3	234
28	Epigenetic landscapes reveal transcription factors that regulate CD8+ T cell differentiation. Nature Immunology, 2017, 18, 573-582.	14.5	193
29	An HIF-1α/VEGF-A Axis in Cytotoxic T Cells Regulates Tumor Progression. Cancer Cell, 2017, 32, 669-683.e5.	16.8	352
30	The origins of memory T cells. Nature, 2017, 552, 337-339.	27.8	23
31	Runx3 programs CD8+ T cell residency in non-lymphoid tissues and tumours. Nature, 2017, 552, 253-257.	27.8	471
32	Proteasome activity regulates CD8+ T lymphocyte metabolism and fate specification. Journal of Clinical Investigation, 2017, 127, 3609-3623.	8.2	35
33	ld2 reinforces TH1 differentiation and inhibits E2A to repress TFH differentiation. Nature Immunology, 2016, 17, 834-843.	14.5	89
34	Molecular Programming of Tumor-Infiltrating CD8+ T Cells and IL15 Resistance. Cancer Immunology Research, 2016, 4, 799-811.	3.4	25
35	Oxygen Sensing by T Cells Establishes an Immunologically Tolerant Metastatic Niche. Cell, 2016, 166, 1117-1131.e14.	28.9	203
36	B-cell survival and development controlled by the coordination of NF-κB family members RelB and cRel. Blood, 2016, 127, 1276-1286.	1.4	38

#	Article	IF	CITATIONS
37	S-2-hydroxyglutarate regulates CD8+ T-lymphocyte fate. Nature, 2016, 540, 236-241.	27.8	306
38	Constitutive Glycolytic Metabolism Supports CD8+ T Cell Effector Memory Differentiation during Viral Infection. Immunity, 2016, 45, 1024-1037.	14.3	167
39	Single-Cell Gene Expression Analyses Reveal Heterogeneous Responsiveness of Fetal Innate Lymphoid Progenitors to Notch Signaling. Cell Reports, 2016, 14, 1500-1516.	6.4	75
40	Id2 regulates hyporesponsive invariant natural killer T cells. Immunology and Cell Biology, 2016, 94, 640-645.	2.3	8
41	ZEB2 drives immature T-cell lymphoblastic leukaemia development via enhanced tumour-initiating potential and IL-7 receptor signalling. Nature Communications, 2015, 6, 5794.	12.8	75
42	ICOS Coreceptor Signaling Inactivates the Transcription Factor FOXO1 to Promote Tfh Cell Differentiation. Immunity, 2015, 42, 239-251.	14.3	204
43	Transcriptional repressor ZEB2 promotes terminal differentiation of CD8+ effector and memory T cell populations during infection. Journal of Experimental Medicine, 2015, 212, 2027-2039.	8.5	206
44	IL-2Rα mediates temporal regulation of IL-2 signaling and enhances immunotherapy. Science Translational Medicine, 2015, 7, 311ra170.	12.4	49
45	Hypoxia-inducible factors regulate T cell metabolism and function. Molecular Immunology, 2015, 68, 527-535.	2.2	66
46	The TCR's sensitivity to self peptide–MHC dictates the ability of naive CD8+ T cells to respond to foreign antigens. Nature Immunology, 2015, 16, 107-117.	14.5	168
47	Transcriptional repressor ZEB2 promotes terminal differentiation of CD8 ⁺ effector and memory T cell populations during infection. Journal of Cell Biology, 2015, 211, 2113OIA259.	5.2	0
48	E and Id Proteins Influence Invariant NKT Cell Sublineage Differentiation and Proliferation. Journal of Immunology, 2014, 192, 2227-2236.	0.8	54
49	An Effective Approach to Prevent Immune Rejection of Human ESC-Derived Allografts. Cell Stem Cell, 2014, 14, 121-130.	11.1	218
50	Molecular regulation of effector and memory T cell differentiation. Nature Immunology, 2014, 15, 1104-1115.	14.5	462
51	HIF Transcription Factors, Inflammation, and Immunity. Immunity, 2014, 41, 518-528.	14.3	880
52	Transcriptional insights into the CD8+ T cell response to infection and memory T cell formation. Nature Immunology, 2013, 14, 404-412.	14.5	303
53	Hypoxia-inducible factors enhance the effector responses of CD8+ T cells to persistent antigen. Nature Immunology, 2013, 14, 1173-1182.	14.5	509
54	Remembering one's ID/E-ntity: E/ID protein regulation of T cell memory. Current Opinion in Immunology, 2013, 25, 660-666.	5.5	24

#	Article	IF	CITATIONS
55	The transcriptional landscape of $\hat{l}\pm\hat{l}^2$ T cell differentiation. Nature Immunology, 2013, 14, 619-632.	14.5	256
56	Identification of transcriptional regulators in the mouse immune system. Nature Immunology, 2013, 14, 633-643.	14.5	179
57	Differentiation of CD8 memory T cells depends on Foxo1. Journal of Experimental Medicine, 2013, 210, 1189-1200.	8.5	190
58	HIF isoforms in the skin differentially regulate systemic arterial pressure. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 17570-17575.	7.1	57
59	IL-25 simultaneously elicits distinct populations of innate lymphoid cells and multipotent progenitor type 2 (MPPtype2) cells. Journal of Experimental Medicine, 2013, 210, 1823-1837.	8.5	127
60	Id2 Influences Differentiation of Killer Cell Lectin-like Receptor G1hi Short-Lived CD8+ Effector T Cells. Journal of Immunology, 2013, 190, 1501-1509.	0.8	44
61	FOXO transcription factors throughout T cell biology. Nature Reviews Immunology, 2012, 12, 649-661.	22.7	284
62	Loss of <scp>E</scp> protein transcription factors <scp>E</scp> 2 <scp>A</scp> and <scp>HEB</scp> delays memoryâ€precursor formation during the <scp>CD</scp> 8 ⁺ <scp>T</scp> â€cell immune response. European Journal of Immunology, 2012, 42, 2031-2041.	2.9	29
63	Molecular definition of the identity and activation of natural killer cells. Nature Immunology, 2012, 13, 1000-1009.	14.5	265
64	The transcriptional regulators Id2 and Id3 control the formation of distinct memory CD8+ T cell subsets. Nature Immunology, 2011, 12, 1221-1229.	14.5	328
65	Innate lymphoid cells promote lung-tissue homeostasis after infection with influenza virus. Nature Immunology, 2011, 12, 1045-1054.	14.5	1,211
66	Innate lymphoid cells promote lung-tissue homeostasis after infection with influenza virus. Nature Immunology, 2011, 12, 1045-54.	14.5	875
67	Transcriptional regulation of NKT cell development and homeostasis. Current Opinion in Immunology, 2010, 22, 199-205.	5.5	32
68	Mature natural killer cells with phenotypic and functional alterations accumulate upon sustained stimulation with IL-15/IL-15Rî± complexes. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 21647-21652.	7.1	112
69	Macrophage Expression of Hypoxia-Inducible Factor-1α Suppresses T-Cell Function and Promotes Tumor Progression. Cancer Research, 2010, 70, 7465-7475.	0.9	542
70	An essential role for the transcription factor HEB in thymocyte survival, Tcra rearrangement and the development of natural killer T cells. Nature Immunology, 2010, 11, 240-249.	14.5	121
71	Transcriptional regulator Id2 controls survival of hepatic NKT cells. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 19461-19466.	7.1	65
72	Memory-Like CD8+ T Cells Generated during Homeostatic Proliferation Defer to Antigen-Experienced Memory Cells. Journal of Immunology, 2009, 183, 3364-3372.	0.8	38

#	Article	IF	CITATIONS
73	Surviving the crash: Transitioning from effector to memory CD8+ T cell. Seminars in Immunology, 2009, 21, 92-98.	5.6	70
74	The Immunological Genome Project: networks of gene expression in immune cells. Nature Immunology, 2008, 9, 1091-1094.	14.5	1,576
75	Interleukin-15/Interleukin-15Rα Complexes Promote Destruction of Established Tumors by Reviving Tumor-Resident CD8+ T Cells. Cancer Research, 2008, 68, 2972-2983.	0.9	151
76	Inhibitor of DNA Binding 2 Is a Small Molecule-Inducible Modulator of Peroxisome Proliferator-Activated Receptor-Î ³ Expression and Adipocyte Differentiation. Molecular Endocrinology, 2008, 22, 2038-2048.	3.7	62
77	IL-7 and IL-15 differentially regulate CD8+ T-cell subsets during contraction of the immune response. Blood, 2008, 112, 3704-3712.	1.4	142
78	The role of E proteins in the CD8+ T cell immune response. FASEB Journal, 2008, 22, 1064.2.	0.5	0
79	Gene expression microarrays: glimpses of the immunological genome. Nature Immunology, 2006, 7, 686-691.	14.5	70
80	Transcriptional regulator Id2 mediates CD8+ T cell immunity. Nature Immunology, 2006, 7, 1317-1325.	14.5	214
81	E proteins and Notch signaling cooperate to promote T cell lineage specification and commitment. Journal of Experimental Medicine, 2006, 203, 1329-1342.	8.5	178
82	Memory T and memory B cells share a transcriptional program of self-renewal with long-term hematopoietic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 3304-3309.	7.1	245
83	Effector and memory CD8+ T cell fate coupled by T-bet and eomesodermin. Nature Immunology, 2005, 6, 1236-1244.	14.5	1,055
84	Central Tolerance Matters. Immunity, 2005, 23, 113-114.	14.3	9
85	The molecular program induced in T cells undergoing homeostatic proliferation. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 16885-16890.	7.1	161
86	Cytokine Requirements for Acute and Basal Homeostatic Proliferation of Naive and Memory CD8+ T Cells. Journal of Experimental Medicine, 2002, 195, 1515-1522.	8.5	502
87	Maintaining the status quo: T-cell homeostasis. Microbes and Infection, 2002, 4, 539-545.	1.9	47
88	T-cell memory: You must remember this…. Current Biology, 2000, 10, R338-R340.	3.9	18
89	Competition for Specific Intrathymic Ligands Limits Positive Selection in a TCR Transgenic Model of CD4+ T Cell Development. Journal of Immunology, 2000, 164, 6252-6259.	0.8	34
90	Naive T Cells Transiently Acquire a Memory-like Phenotype during Homeostasis-Driven Proliferation. Journal of Experimental Medicine, 2000, 192, 557-564.	8.5	591

#	Article	IF	CITATIONS
91	Selecting and maintaining a diverse T-cell repertoire. Nature, 1999, 402, 255-262.	27.8	747
92	Low-Affinity Ligands for the TCR Drive Proliferation of Mature CD8+ T Cells in Lymphopenic Hosts. Immunity, 1999, 11, 183-190.	14.3	498
93	CD8 Lineage Commitment in the Absence of CD8. Immunity, 1997, 6, 633-642.	14.3	66
94	RETENTION OF ENDOCRINE FUNCTION IN THE SCID-Hu PANCREAS MOUSE—A MODEL FOR THE DEVELOPMENT OF HUMAN FETAL ISLET TISSUE. Transplantation, 1995, 59, 1497-1500.	1.0	6
95	Differences in Adhesion Markers, Activation Markers, and TcR in Islet Infiltratingvs.Peripheral Lymphocytes in the NOD Mouse. Journal of Autoimmunity, 1995, 8, 209-220.	6.5	8