List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5218761/publications.pdf Version: 2024-02-01

TÃ14NDE FÃ14LÃO

#	Article	IF	CITATIONS
1	Status of research toward the ITER disruption mitigation system. Physics of Plasmas, 2015, 22, .	1.9	182
2	Overview of the SPARC tokamak. Journal of Plasma Physics, 2020, 86, .	2.1	181
3	Nonlinear neoclassical transport in a rotating impure plasma with large gradients. Physics of Plasmas, 1999, 6, 3066-3075.	1.9	64
4	Destabilization of magnetosonic-whistler waves by a relativistic runaway beam. Physics of Plasmas, 2006, 13, 062506.	1.9	61
5	Runaway electron drift orbits in magnetostatic perturbed fields. Nuclear Fusion, 2011, 51, 043004.	3.5	60
6	Effective Critical Electric Field for Runaway-Electron Generation. Physical Review Letters, 2015, 114, 115002.	7.8	59
7	Simulation of runaway electron generation during plasma shutdown by impurity injection in ITER. Plasma Physics and Controlled Fusion, 2011, 53, 035014.	2.1	53
8	Numerical calculation of the runaway electron distribution function and associated synchrotron emission. Computer Physics Communications, 2014, 185, 847-855.	7.5	53
9	Runaway electron generation in a cooling plasma. Physics of Plasmas, 2005, 12, 122505.	1.9	47
10	Kinetic modelling of runaway electrons in dynamic scenarios. Nuclear Fusion, 2016, 56, 112009.	3.5	45
11	Effect of Partially Screened Nuclei on Fast-Electron Dynamics. Physical Review Letters, 2017, 118, 255001.	7.8	45
12	Origin of superthermal ion cyclotron emission in tokamaks. Nuclear Fusion, 1997, 37, 1281-1293.	3.5	44
13	Runaway electron losses caused by resonant magnetic perturbations in ITER. Plasma Physics and Controlled Fusion, 2011, 53, 095004.	2.1	42
14	Influence of massive material injection on avalanche runaway generation during tokamak disruptions. Nuclear Fusion, 2019, 59, 084004.	3.5	42
15	Effect of partially ionized impurities and radiation on the effective critical electric field for runaway generation. Plasma Physics and Controlled Fusion, 2018, 60, 074010.	2.1	40
16	Magnetic field threshold for runaway generation in tokamak disruptions. Physics of Plasmas, 2009, 16,	1.9	39
17	Nonlinear neoclassical transport in toroidal edge plasmas. Physics of Plasmas, 2001, 8, 3305-3313.	1.9	38
18	Compressional Alfvén Eigenmodes on MAST. Plasma Physics and Controlled Fusion, 2008, 50, 115011.	2.1	38

TüNDE FüLöP

#	Article	IF	CITATIONS
19	Electron kinetics in a cooling plasma. Physics of Plasmas, 2004, 11, 5704-5709.	1.9	37
20	Numerical characterization of bump formation in the runaway electron tail. Plasma Physics and Controlled Fusion, 2016, 58, 025016.	2.1	36
21	Effect of Poloidal Density Variation of Neutral Atoms on the Tokamak Edge. Physical Review Letters, 2002, 89, 225003.	7.8	35
22	The effect of ITER-like wall on runaway electron generation in JET. Nuclear Fusion, 2013, 53, 123017.	3.5	35
23	Study and design of the ion cyclotron resonance heating system for the stellarator Wendelstein 7-X. Physics of Plasmas, 2014, 21, .	1.9	35
24	Turbulent and neoclassical impurity transport in tokamak plasmas. Physics of Plasmas, 2009, 16, 032306.	1.9	34
25	Synchrotron radiation from a runaway electron distribution in tokamaks. Physics of Plasmas, 2013, 20,	1.9	34
26	Quasi-linear analysis of whistler waves driven by relativistic runaway beams in tokamaks. Plasma Physics and Controlled Fusion, 2008, 50, 045003.	2.1	32
27	Ion cyclotron emission from fusion products and beam ions in the Tokamak Fusion Test Reactor. Nuclear Fusion, 1998, 38, 761-773.	3.5	31
28	Generalized collision operator for fast electrons interacting with partially ionized impurities. Journal of Plasma Physics, 2018, 84, .	2.1	31
29	MHD stability and disruptions in the SPARC tokamak. Journal of Plasma Physics, 2020, 86, .	2.1	31
30	Effect of poloidal asymmetry on the impurity density profile in tokamak plasmas. Physics of Plasmas, 2011, 18, .	1.9	30
31	Runaway dynamics in the DT phase of ITER operations in the presence of massive material injection. Journal of Plasma Physics, 2020, 86, .	2.1	30
32	Controlling edge plasma rotation through poloidally localized refueling. Physics of Plasmas, 2003, 10, 4396-4404.	1.9	29
33	The effect of resonant magnetic perturbations on runaway electron transport in ITER. Plasma Physics and Controlled Fusion, 2012, 54, 125008.	2.1	29
34	Microtearing modes in spherical and conventional tokamaks. Nuclear Fusion, 2013, 53, 063025.	3.5	28
35	SOFT: a synthetic synchrotron diagnostic for runaway electrons. Nuclear Fusion, 2018, 58, 026032.	3.5	28
36	Evaluation of the Dreicer runaway generation rate in the presence of high- impurities using a neural network. Journal of Plasma Physics, 2019, 85, .	2.1	26

TüNDE FüLöP

#	Article	IF	CITATIONS
37	Impurity transport in ITER-like plasmas. Physics of Plasmas, 2006, 13, 112504.	1.9	24
38	Finite orbit width stabilizing effect on toroidal Alfvén eigenmodes excited by passing and trapped energetic ions. Plasma Physics and Controlled Fusion, 1996, 38, 811-828.	2.1	23
39	Influence of the radio frequency ponderomotive force on anomalous impurity transport in tokamaks. Physics of Plasmas, 2008, 15, 042316.	1.9	23
40	Effect of poloidal asymmetries on impurity peaking in tokamaks. Physics of Plasmas, 2012, 19, 052307.	1.9	23
41	The radial and poloidal localization of fast magnetoacoustic eigenmodes in tokamaks. Physics of Plasmas, 2000, 7, 1479-1486.	1.9	22
42	Radiation reaction induced non-monotonic features in runaway electron distributions. Journal of Plasma Physics, 2015, 81, .	2.1	22
43	DREAM: A fluid-kinetic framework for tokamak disruption runaway electron simulations. Computer Physics Communications, 2021, 268, 108098.	7.5	22
44	Localization of compressional Alfvén eigenmodes in spherical tori. Physics of Plasmas, 2003, 10, 1437-1442.	1.9	21
45	Influence of magnetic shear on impurity transport. Physics of Plasmas, 2007, 14, 052303.	1.9	21
46	Impurity transport driven by ion temperature gradient turbulence in tokamak plasmas. Physics of Plasmas, 2010, 17, .	1.9	21
47	On the relativistic large-angle electron collision operator for runaway avalanches in plasmas. Journal of Plasma Physics, 2018, 84, .	2.1	21
48	Localized fast magnetoacoustic eigenmodes in tokamak plasmas. Nuclear Fusion, 1998, 38, 1871-1879.	3.5	20
49	Runaway electron generation in tokamak disruptions. Plasma Physics and Controlled Fusion, 2009, 51, 124008.	2.1	20
50	Effect of bremsstrahlung radiation emission on fast electrons in plasmas. New Journal of Physics, 2016, 18, 093023.	2.9	20
51	Effect of neutral atoms on tokamak edge plasmas. Physics of Plasmas, 2001, 8, 5214-5220.	1.9	19
52	Runaway electron generation during plasma shutdown by killer pellet injection. Plasma Physics and Controlled Fusion, 2008, 50, 055006.	2.1	19
53	Impurity flows and plateau-regime poloidal density variation in a tokamak pedestal. Physics of Plasmas, 2011, 18, .	1.9	19
54	Effects of magnetic perturbations and radiation on the runaway avalanche. Journal of Plasma Physics, 2021, 87, .	2.1	19

#	Article	IF	CITATIONS
55	A possible mechanism responsible for generating impurity outward flow under radio frequency heating. Plasma Physics and Controlled Fusion, 2011, 53, 115008.	2.1	18
56	Enhanced target normal sheath acceleration using colliding laser pulses. Communications Physics, 2019, 2, .	5.3	18
57	Poloidal asymmetries due to ion cyclotron resonance heating. Plasma Physics and Controlled Fusion, 2012, 54, 105010.	2.1	17
58	Impurity transport in trapped electron mode driven turbulence. Physics of Plasmas, 2013, 20, 032310.	1.9	17
59	Energetic electron transport in the presence of magnetic perturbations in magnetically confined plasmas. Journal of Plasma Physics, 2015, 81, .	2.1	17
60	Radiation emission in laser-wakefields driven by structured laser pulses with orbital angular momentum. Scientific Reports, 2019, 9, 9840.	3.3	17
61	Spatiotemporal analysis of the runaway distribution function from synchrotron images in an ASDEX Upgrade disruption. Journal of Plasma Physics, 2021, 87, .	2.1	17
62	Modeling the complete prevention of disruption-generated runaway electron beam formation with a passive 3D coil in SPARC. Nuclear Fusion, 2021, 61, 124003.	3.5	17
63	NORSE: A solver for the relativistic non-linear Fokker–Planck equation for electrons in a homogeneous plasma. Computer Physics Communications, 2017, 212, 269-279.	7.5	16
64	Coherent Diffraction Radiation of Relativistic Terahertz Pulses from a Laser-Driven Microplasma Waveguide. Physical Review Letters, 2019, 123, 094801.	7.8	16
65	Neutral diffusion and anomalous effects on ion flow shear. Physics of Plasmas, 1998, 5, 3398-3401.	1.9	15
66	Neutral diffusion and anomalous effects on collisional ion flow shear in tokamaks. Physics of Plasmas, 1998, 5, 3969-3973.	1.9	15
67	Low Mach-number collisionless electrostatic shocks and associated ion acceleration. Plasma Physics and Controlled Fusion, 2018, 60, 035004.	2.1	15
68	Relativistic magnetic reconnection driven by a laser interacting with a micro-scale plasma slab. Nature Communications, 2018, 9, 1601.	12.8	15
69	Effect of plasma elongation on current dynamics during tokamak disruptions. Journal of Plasma Physics, 2020, 86, .	2.1	15
70	Laser-driven proton acceleration from ultrathin foils with nanoholes. Scientific Reports, 2021, 11, 5006.	3.3	15
71	Hot-Tail Runaway Seed Landscape during the Thermal Quench in Tokamaks. Physical Review Letters, 2021, 127, 035001.	7.8	15
72	Plasma rotation from momentum transport by neutrals in tokamaks. Nuclear Fusion, 2016, 56, 124002.	3.5	14

#	Article	IF	CITATIONS
73	Impurity transport due to electromagnetic drift wave turbulence. Physics of Plasmas, 2012, 19, 032301.	1.9	13
74	Ion Runaway in Lightning Discharges. Physical Review Letters, 2013, 111, 015006.	7.8	13
75	Quasi-linear analysis of the extraordinary electron wave destabilized by runaway electrons. Physics of Plasmas, 2014, 21, .	1.9	13
76	Proton acceleration by a pair of successive ultraintense femtosecond laser pulses. Physics of Plasmas, 2018, 25, .	1.9	13
77	Electron Beam Driven Generation of Frequency-Tunable Isolated Relativistic Subcycle Pulses. Physical Review Letters, 2019, 122, 104803.	7.8	13
78	Recent DIII-D advances in runaway electron measurement and model validation. Nuclear Fusion, 2019, 59, 066025.	3.5	13
79	Runaway Positrons in Fusion Plasmas. Physical Review Letters, 2012, 108, 225003.	7.8	12
80	Mode Conversion of Waves in the Ion-Cyclotron Frequency Range in Magnetospheric Plasmas. Physical Review Letters, 2013, 111, 125002.	7.8	12
81	Turbulent transport of impurities and their effect on energy confinement. Plasma Physics and Controlled Fusion, 2013, 55, 074012.	2.1	12
82	Interpretation of runaway electron synchrotron and bremsstrahlung images. Nuclear Fusion, 2018, 58, 082001.	3.5	12
83	Electromagnetic waves destabilized by runaway electrons in near-critical electric fields. Physics of Plasmas, 2013, 20, .	1.9	11
84	Alfvénic instabilities driven by runaways in fusion plasmas. Physics of Plasmas, 2014, 21, .	1.9	11
85	Relativistic Vlasov-Maxwell modelling using finite volumes and adaptive mesh refinement. European Physical Journal D, 2017, 71, 1.	1.3	11
86	Kinetic and finite ion mass effects on the transition to relativistic self-induced transparency in laser-driven ion acceleration. New Journal of Physics, 2017, 19, 123042.	2.9	11
87	Enhancement of laser-driven ion acceleration in non-periodic nanostructured targets. Journal of Plasma Physics, 2020, 86, .	2.1	10
88	Runaway electron generation during tokamak start-up. Journal of Plasma Physics, 2022, 88, .	2.1	10
89	Theory of the cross sections for inelastic scattering of electrons by core level excitations in solids. Ultramicroscopy, 1997, 69, 69-81.	1.9	8
90	Collisional model of quasilinear transport driven by toroidal electrostatic ion temperature gradient modes. Physics of Plasmas, 2009, 16, .	1.9	8

#	Article	IF	CITATIONS
91	Global anomalous transport of ICRH- and NBI-heated fast ions. Plasma Physics and Controlled Fusion, 2017, 59, 044007.	2.1	8
92	Generation of attosecond electron bunches and x-ray pulses from few-cycle femtosecond laser pulses. Plasma Physics and Controlled Fusion, 2021, 63, 045019.	2.1	8
93	Assessing energy dependence of the transport of relativistic electrons in perturbed magnetic fields with orbit-following simulations. Nuclear Fusion, 2020, 60, 126050.	3.5	8
94	Collisionality dependence of the quasilinear particle flux due to microinstabilities. Physics of Plasmas, 2008, 15, 072308.	1.9	7
95	Impurity transport in Alcator C-Mod in the presence of poloidal density variation induced by ion cyclotron resonance heating. Plasma Physics and Controlled Fusion, 2014, 56, 124005.	2.1	7
96	Vlasov modelling of laser-driven collisionless shock acceleration of protons. Physics of Plasmas, 2016, 23, 053103.	1.9	7
97	Kinetic modelling of runaway electron generation in argon-induced disruptions in ASDEX Upgrade. Journal of Plasma Physics, 2020, 86, .	2.1	7
98	Runaway electron synchrotron radiation in a vertically translated plasma. Nuclear Fusion, 2020, 60, 094002.	3.5	7
99	Tokamak current driven by poloidally asymmetric fueling. Physics of Plasmas, 2006, 13, 102506.	1.9	6
100	Effect of impurities on the transition between minority ion and mode conversion ICRH heating in (3He)–H tokamak plasmas. Nuclear Fusion, 2013, 53, 053014.	3.5	6
101	Effects of oblique incidence and colliding pulses on laser-driven proton acceleration from relativistically transparent ultrathin targets. Journal of Plasma Physics, 2020, 86, .	2.1	6
102	Numerical calculation of ion runaway distributions. Physics of Plasmas, 2015, 22, 052122.	1.9	5
103	Edge momentum transport by neutrals: an interpretive numerical framework. Nuclear Fusion, 2017, 57, 066048.	3.5	5
104	Multimillijoule terahertz radiation from laser interactions with microplasma waveguides. Plasma Physics and Controlled Fusion, 2021, 63, 035028.	2.1	5
105	Interaction of electromagnetic waves and suprathermal electrons in the near-critical electric field limit. Journal of Physics: Conference Series, 2012, 401, 012012.	0.4	4
106	Radio Frequency Induced and Neoclassical Asymmetries and their Effects on Turbulent Impurity Transport in a Tokamak. Contributions To Plasma Physics, 2014, 54, 534-542.	1.1	4
107	Runaway-electron formation and electron slide-away in an ITER post-disruption scenario. Journal of Physics: Conference Series, 2016, 775, 012013.	0.4	4
108	Proton acceleration in a laser-induced relativistic electron vortex. Journal of Plasma Physics, 2019, 85, .	2.1	4

#	Article	IF	CITATIONS
109	Modelling of runaway electron dynamics during argon-induced disruptions in ASDEX Upgrade and JET. Plasma Physics and Controlled Fusion, 2021, 63, 085021.	2.1	4
110	One-Dimensional Beam Transport—Revisited. Nuclear Science and Engineering, 1998, 129, 51-60.	1.1	3
111	Slowing-Down Dynamics of Fast Particles in Plasmas via the Fokker-Planck Equation. Nuclear Science and Engineering, 2004, 146, 99-105.	1.1	3
112	Edge rotation from momentum transport by neutrals. Journal of Physics: Conference Series, 2016, 775, 012011.	0.4	3
113	Dynamics of positrons during relativistic electron runaway. Journal of Plasma Physics, 2018, 84, .	2.1	3
114	Attosecond betatron radiation pulse train. Scientific Reports, 2020, 10, 15074.	3.3	3
115	Characteristics of microinstabilities in electron cyclotron and ohmic heated discharges. Physics of Plasmas, 2011, 18, 082506.	1.9	2
116	Turbulent transport of MeV range cyclotron heated minorities as compared to alpha particles. Plasma Physics and Controlled Fusion, 2016, 58, 105001.	2.1	2
117	Origins of plateau formation in ion energy spectra under target normal sheath acceleration. Physics of Plasmas, 2017, 24, 123114.	1.9	2
118	Nonlinear Neoclassical Transport in Toroidal Edge Plasmas. Contributions To Plasma Physics, 2002, 42, 339-349.	1.1	1
119	Localized Gas Puffing Control of Edge Rotation and Electric Field. Contributions To Plasma Physics, 2004, 44, 281-282.	1.1	1
120	Effect of plasma shaping and resonance location on minority ion temperature anisotropy in tokamak plasmas heated with ICRH. Journal of Physics: Conference Series, 2012, 401, 012011.	0.4	1
121	Modelling of the ion cyclotron resonance heating scenarios for W7-X stellarator. , 2014, , .		1
122	Kazakov and Fülöp Reply:. Physical Review Letters, 2014, 113, 089502.	7.8	1
123	Relativistic laser plasma interactions. European Physical Journal D, 2017, 71, 1.	1.3	1
124	Attosecond dispersion as a diagnostics tool for solid-density laser-generated plasmas. Journal of Plasma Physics, 2022, 88, .	2.1	1
125	Analysis of Profile Effects on HighQSubignited Tokamak Fusion Plasmas. Physica Scripta, 1998, 58, 256-261.	2.5	0
126	Impurity transport in magnetically confined plasmas. Plasma Physics and Controlled Fusion, 2014, 56, 120301.	2.1	0

#	Article	IF	CITATIONS
127	plasmas. , 2014, , .		Ο
128	Tunneling and mode conversion of fast magnetosonic waves in the magnetospheres of Earth and Mercury. Journal of Plasma Physics, 2015, 81, .	2.1	0