List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5218703/publications.pdf Version: 2024-02-01

7HI'EN LIN

#	Article	IF	CITATIONS
1	<i>N</i> -Methylimidazolium containing metal phosphate–oxalates: solvent-free synthesis, crystal structure, and proton conduction. CrystEngComm, 2022, 24, 743-746.	2.6	6
2	Highâ€Performance Sulfate Optical Materials Exhibiting Giant Second Harmonic Generation and Large Birefringence. Angewandte Chemie - International Edition, 2022, 61, .	13.8	94
3	Three-dimensional all-inorganic dual halogen emitter Cs ₂ Cd ₂ BrCl ₅ exhibiting broadband white-light emission. Journal of Materials Chemistry C, 2022, 10, 13844-13850.	5.5	8
4	Highâ€Performance Sulfate Optical Materials Exhibiting Giant Second Harmonic Generation and Large Birefringence. Angewandte Chemie, 2022, 134, e202116790.	2.0	8
5	Unprecedented boat-shaped [Mo ₂ O ₅ (IO ₃) ₄] ^{2â^'} polyanions induced a strong second harmonic generation response. Chemical Communications, 2022, 58, 3350-3353.	4.1	16
6	Layered Perovskite-like Nitrate Cs ₂ Pb(NO ₃) ₂ Br ₂ as a Multifunctional Optical Material. Inorganic Chemistry, 2022, 61, 4184-4192.	4.0	14
7	Corrugated 1D Hybrid Metal Halide [C ₆ H ₇ CIN]CdCl ₃ Exhibiting Broadband White-Light Emission. Inorganic Chemistry, 2022, 61, 4752-4759.	4.0	15
8	Open-framework scandium phosphate-oxalates: Solvent-free synthesis, proton conduction, and luminescence. Inorganic Chemistry Communication, 2022, 140, 109430.	3.9	2
9	Enhanced Interlayer Interaction and Second-Harmonic-Generation Response in a KBe ₂ BO ₃ F ₂ -Type Inorganic–Organic Hybrid Zinc Borate. Inorganic Chemistry, 2022, 61, 6720-6724.	4.0	10
10	Homochiral Hybrid Organic–Inorganic Cadmium Chlorides Directed by Enantiopure Amino Acids. Inorganic Chemistry, 2022, 61, 11032-11035.	4.0	14
11	Reply to the Correspondence on "K ₂ Sb(P ₂ O ₇)F: Cairo Pentagonal Layer with Bifunctional Genes Reveal Optical Performance― Angewandte Chemie - International Edition, 2021, 60, 3856-3857.	13.8	2
12	Amino acid-templated zinc phosphites: low-dimensional structures, fluorescence, and nonlinear optical properties. Dalton Transactions, 2021, 50, 5442-5445.	3.3	6
13	Organically templated metal phosphate-oxalates: Solvent-free synthesis, crystal structure, and proton conduction. Inorganic Chemistry Communication, 2021, 124, 108403.	3.9	9
14	Isonicotinic acid-templated metal phosphate–oxalates: solvent-free synthesis, luminescence, and proton conduction. CrystEngComm, 2021, 23, 6855-6858.	2.6	6
15	Indium phosphate oxalates with layered structures: Solvent-free approach, hydrothermal stability, and proton conduction. Inorganic Chemistry Communication, 2021, 133, 108975.	3.9	5
16	Reply to the Correspondence on "K 2 Sb(P 2 O 7)F: Cairo Pentagonal Layer with Bifunctional Genes Reveal Optical Performance― Angewandte Chemie, 2021, 133, 3900-3901.	2.0	0
17	Crystalline metal phosphates with layered structures: Synthesis, luminescence, and proton conduction. Journal of Solid State Chemistry, 2020, 282, 121067.	2.9	7
18	Atomically precise metal-chalcogenide semiconductor molecular nanoclusters with high dispersibility: Designed synthesis and intracluster photocarrier dynamics. Nano Research, 2020, 13, 2828-2836.	10.4	22

#	Article	IF	CITATIONS
19	Metal phosphate-oxalates with unique framework topologies: Solvent-free synthesis, water stability, and proton conduction. Journal of Solid State Chemistry, 2020, 292, 121709.	2.9	13
20	A Ti-MOF Decorated With a Pt Nanoparticle Cocatalyst for Efficient Photocatalytic H2 Evolution: A Theoretical Study. Frontiers in Chemistry, 2020, 8, 660.	3.6	8
21	K ₂ Sb(P ₂ O ₇)F: Cairo Pentagonal Layer with Bifunctional Genes Reveal Optical Performance. Angewandte Chemie, 2020, 132, 21337-21342.	2.0	26
22	K ₂ Sb(P ₂ O ₇)F: Cairo Pentagonal Layer with Bifunctional Genes Reveal Optical Performance. Angewandte Chemie - International Edition, 2020, 59, 21151-21156.	13.8	156
23	Pillared-layered indium phosphites templated by amino acids: isoreticular structures, water stability, and fluorescence. Dalton Transactions, 2020, 49, 14766-14770.	3.3	4
24	Ionothermal synthesis of crystalline metal phosphites using multifunctional protic ionic liquids. CrystEngComm, 2020, 22, 6096-6100.	2.6	5
25	CsHgNO ₃ Cl ₂ : A New Nitrate UV Birefringent Material Exhibiting an Optimized Layered Structure. Inorganic Chemistry, 2020, 59, 12578-12585.	4.0	32
26	Two amino acid-templated metal phosphates: surfactant-thermal synthesis, water stability, and proton conduction. Dalton Transactions, 2020, 49, 5440-5444.	3.3	10
27	A ₆ Sb ₄ F ₁₂ (SO ₄) ₃ (A = Rb, Cs): Two Novel Antimony Fluoride Sulfates with Unique Crown-like Clusters. Inorganic Chemistry, 2020, 59, 8345-8352.	4.0	35
28	Organically templated metal phosphites: Ionothermal synthesis, crystal structure, and proton conduction. Inorganic Chemistry Communication, 2019, 107, 107476.	3.9	2
29	Cluster–oxalate frameworks with extra-large channels: solvent-free synthesis, chemical stability, and proton conduction. Dalton Transactions, 2019, 48, 13130-13134.	3.3	10
30	Plasma-catalysed reaction M ⁿ⁺ + L–H → MOFs: facile and tunable construction of metal–organic frameworks in dielectric barrier discharge. Chemical Communications, 2019, 55, 12192-12195.	4.1	43
31	Organically templated metal sulfate-oxalates: Solvent-free synthesis, crystal structure, and proton conduction. Journal of Solid State Chemistry, 2019, 276, 1-5.	2.9	8
32	Y ₈ O(OH) ₁₅ (CO ₃) ₃ Cl: an excellent short-wave UV nonlinear optical material exhibiting an infrequent three-dimensional inorganic cationic framework. Chemical Communications, 2019, 55, 4538-4541.	4.1	43
33	Surfactant-Thermal Synthesis of Amino Acid-Templated Zinc Phosphates with 3-Connected Nets Related to Zeolite ABW. Inorganic Chemistry, 2019, 58, 4089-4092.	4.0	20
34	CsSbF ₂ SO ₄ : An Excellent Ultraviolet Nonlinear Optical Sulfate with a KTiOPO ₄ (KTP)â€ŧype Structure. Angewandte Chemie, 2019, 131, 6598-6604.	2.0	72
35	CsSbF ₂ SO ₄ : An Excellent Ultraviolet Nonlinear Optical Sulfate with a KTiOPO ₄ (KTP)â€ŧype Structure. Angewandte Chemie - International Edition, 2019, 58, 6528-6534.	13.8	280
36	Two low-dimensional metal halides: ionothermal synthesis, photoluminescence, and nonlinear optical properties. Dalton Transactions, 2019, 48, 17451-17455.	3.3	13

#	Article	IF	CITATIONS
37	Three-Dimensional Superlattices Based on Unusual Chalcogenide Supertetrahedral In–Sn–S Nanoclusters. Inorganic Chemistry, 2019, 58, 31-34.	4.0	10
38	Stabilization of the Pentazolate Anion in a Zeolitic Architecture with Na ₂₀ N ₆₀ and Na ₂₄ N ₆₀ Nanocages. Angewandte Chemie, 2018, 130, 2622-2625.	2.0	18
39	An Unusual Metal Chalcogenide Zeolitic Framework Built from the Extended Spiro-5 Units with Supertetrahedral Clusters as Nodes. Inorganic Chemistry, 2018, 57, 921-925.	4.0	17
40	Exploration of new water stable proton-conducting materials in an amino acid-templated metal phosphate system. Dalton Transactions, 2018, 47, 654-658.	3.3	26
41	Water stable oxalate-based coordination polymers with <i>in situ</i> generated cyclic dipeptides showing high proton conductivity. Dalton Transactions, 2018, 47, 15288-15292.	3.3	10
42	Cs ₃ VO(O ₂) ₂ CO ₃ : an exceptionally thermostable carbonatoperoxovanadate with an extremely large second-harmonic generation response. Chemical Science, 2018, 9, 8957-8961.	7.4	107
43	Using Multifunctional Ionic Liquids in the Synthesis of Crystalline Metal Phosphites and Hybrid Framework Solids. Inorganic Chemistry, 2018, 57, 14031-14034.	4.0	17
44	Ionothermal Synthesis of Open-Framework Metal Phosphates Using a Multifunctional Ionic Liquid. Inorganic Chemistry, 2018, 57, 8726-8729.	4.0	25
45	Perfect balance harmony in Ba ₂ NO ₃ (OH) ₃ : a beryllium-free nitrate as a UV nonlinear optical material. Chemical Communications, 2018, 54, 5792-5795.	4.1	143
46	Solvent-free synthesis of metal phosphate-oxalates with layered and zeolitic structures. Inorganic Chemistry Communication, 2018, 96, 65-68.	3.9	4
47	The First Observation on Dual Self-Closed and Extended Assembly Modes in Supertetrahedral T3 Cluster Based Open-Framework Chalcogenide. Crystal Growth and Design, 2017, 17, 2936-2940.	3.0	21
48	Solvent-free synthesis of new metal phosphate-oxalates with helical-chain and slablike structures. Inorganic Chemistry Communication, 2017, 75, 46-48.	3.9	7
49	A 36-Membered Ring Metal Chalcogenide with a Very Low Framework Density. Inorganic Chemistry, 2017, 56, 14730-14733.	4.0	23
50	Microporous Metal-Organic Frameworks Based on Zinc Clusters and Their Fluorescence Enhancements towards Acetone and Chloroform. European Journal of Inorganic Chemistry, 2016, 2016, 3411-3416.	2.0	17
51	Amine-Ligated Approach for the Synthesis of Extra-Large-Pore Zinc Phosphites with qtz-h and bnn Topologies. Inorganic Chemistry, 2016, 55, 3727-3729.	4.0	19
52	Two open-framework zinc phosphites constructed from different secondary building units. Inorganic Chemistry Communication, 2016, 72, 96-99.	3.9	2
53	Supramolecular Templating Approach for the Solvent-Free Synthesis of Open-Framework Metal Oxalates. Inorganic Chemistry, 2016, 55, 7817-7819.	4.0	32
54	Solvent-free synthesis of new metal sulfate–oxalates containing chain-like building blocks. Inorganic Chemistry Communication, 2016, 63, 20-23.	3.9	12

#	Article	IF	CITATIONS
55	Open-framework beryllium phosphates with a zeolitic CrB4 topology and their structural analogues containing 12-ring channels. CrystEngComm, 2015, 17, 2162-2167.	2.6	12
56	A Hybrid Open-Framework Structure Containing Different Manganese Phosphate Chains as Its Building Blocks. Inorganic Chemistry, 2015, 54, 19-21.	4.0	12
57	Solvent-free synthesis of new metal phosphate–oxalates: influence of different metal ions on the framework structures. Dalton Transactions, 2015, 44, 13485-13489.	3.3	18
58	Solvent-Free Synthesis of Crystalline Metal Phosphate Oxalates with a (4,6)-Connected fsh Topology. Inorganic Chemistry, 2015, 54, 9387-9389.	4.0	34
59	Solvent-free synthesis of new magnesium phosphate–oxalates displaying diverse framework topologies. CrystEngComm, 2015, 17, 9296-9299.	2.6	14
60	Open-Framework Beryllium Hydrogen Phosphates with (3,4)-Connected Networks. European Journal of Inorganic Chemistry, 2014, 2014, 2025-2028.	2.0	4
61	Solvent-free synthesis of new metal phosphite–oxalates with open-framework structures. Dalton Transactions, 2014, 43, 7695-7698.	3.3	28
62	Li4Mn5O12 prepared using l-lysine as additive and its electrochemical performance. Ionics, 2013, 19, 1483-1487.	2.4	11
63	Crystalline beryllium carboxylate frameworks containing inorganic chains of BeO4 tetrahedra. CrystEngComm, 2013, 15, 1845.	2.6	20
64	Solvent-free synthesis of new manganese phosphate–oxalate hybrid solids. CrystEngComm, 2013, 15, 5602.	2.6	15
65	Solvothermal synthesis of new open-framework metal phosphites with structure-directing agents generated in situ. Solid State Sciences, 2013, 19, 80-84.	3.2	6
66	A Layered Zinc(II) Coordination Polymer Containing Infinite Zn–S–Zn Chains and its Clusterâ€ i ke Derivative. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2013, 639, 2605-2608.	1.2	1
67	Crystalline beryllium carboxylate frameworks with rutile-type and cubic-C3N4topologies. CrystEngComm, 2012, 14, 95-97.	2.6	18
68	Solvent-free synthesis of new open-framework oxalate structures. CrystEngComm, 2012, 14, 5734.	2.6	18
69	(C2H8N)2[Be3(HPO3)4]: a low-density beryllium phosphite with large 16-membered rings and helical channels. CrystEngComm, 2011, 13, 3646.	2.6	24
70	A 3,4-Connected Beryllium Phosphite Framework Containing 24-Ring Channels with a Very Low Density. Inorganic Chemistry, 2011, 50, 8697-8699.	4.0	59
71	â€~Pearls in paddy field': monodisperse boron-doped diamond microspheres produced in a silica-nanosphere-layers matrix by chemical vapor deposition. RSC Advances, 2011, 1, 1701.	3.6	1
72	Openâ€Framework Beryllium Phosphites with Layered Structures. European Journal of Inorganic Chemistry, 2011, 2011, 4949-4953.	2.0	9

#	Article	IF	CITATIONS
73	Flux synthesis of two new open-framework zinc phosphites with 16-ring channels. Microporous and Mesoporous Materials, 2010, 131, 418-422.	4.4	9
74	Water-in-oil microemulsion method preparation and capacitance performance study of Li4Mn5O12. Journal of Solid State Electrochemistry, 2010, 14, 1509-1513.	2.5	11
75	Solvothermal Synthesis of New Luminescent Zinc(II) Coordination Polymers with Oneâ€Dimensional Homochiral Structures. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2010, 636, 2535-2538.	1.2	6
76	Structural Transformation of Threeâ€Dimensional Bimetallic Phosphites Containing Cornerâ€Sharing 4â€Ring Chains. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2009, 635, 2391-2395.	1.2	8
77	Transformation of a Layered Zinc Phosphite to a Three-Dimensional Open-Framework Structure with Intersecting 16- and 12-Ring Channels. Inorganic Chemistry, 2009, 48, 3517-3519.	4.0	29