
Zhongxiang Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5218318/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Development of the Yearly Mode-1 M2 Internal Tide Model in 2019. Journal of Atmospheric and Oceanic Technology, 2022, 39, 463-478.	1.3	4
2	Accuracy assessment of global internal-tide models using satellite altimetry. Ocean Science, 2021, 17, 147-180.	3.4	28
3	Altimetry for the future: Building on 25 years of progress. Advances in Space Research, 2021, 68, 319-363.	2.6	119
4	Seasonal mode-1 M2 internal tides from satellite altimetry. Journal of Physical Oceanography, 2021, , .	1.7	7
5	On the vertical structure of internal solitary waves in the northeastern South China Sea. Deep-Sea Research Part I: Oceanographic Research Papers, 2021, 173, 103550.	1.4	12
6	Enhanced diapycnal mixing with polarity-reversing internal solitary waves revealed by seismic reflection data. Nonlinear Processes in Geophysics, 2021, 28, 445-465.	1.3	6
7	On the interplay between horizontal resolution and wave drag and their effect on tidal baroclinic mode waves in realistic global ocean simulations. Ocean Modelling, 2020, 152, 101656.	2.4	32
8	Internal tides can provide thermal refugia that will buffer some coral reefs from future global warming. Scientific Reports, 2020, 10, 13435.	3.3	26
9	Observations of the Lowâ€Mode Internal Tide and Its Interaction With Mesoscale Flow South of the Azores. Journal of Geophysical Research: Oceans, 2020, 125, e2019JC015879.	2.6	12
10	On the interplay between horizontal resolution and wave drag and their effect on tidal baroclinic mode waves in realistic global ocean simulations. , 2020, 152, 101656-101656.		1
11	Southward Internal Tides in the Northeastern South China Sea. Journal of Geophysical Research: Oceans, 2020, 125, e2020JC016554.	2.6	23
12	Disintegration of the K1 Internal Tide in the South China Sea due to Parametric Subharmonic Instability. Journal of Physical Oceanography, 2020, 50, 3605-3622.	1.7	6
13	Energy Flux Observations in an Internal Tide Beam in the Eastern North Atlantic. Journal of Geophysical Research: Oceans, 2019, 124, 5747-5764.	2.6	7
14	Measuring Global Ocean Heat Content to Estimate the Earth Energy Imbalance. Frontiers in Marine Science, 2019, 6, .	2.5	123
15	Global Assessment of Semidiurnal Internal Tide Aliasing in Argo Profiles. Journal of Physical Oceanography, 2019, 49, 2523-2533.	1.7	5
16	Decomposition of the Multimodal Multidirectional M2 Internal Tide Field. Journal of Atmospheric and Oceanic Technology, 2019, 36, 1157-1173.	1.3	16
17	Deep-ocean mixing driven by small-scale internal tides. Nature Communications, 2019, 10, 2099.	12.8	108
18	Mapping Internal Tides From Satellite Altimetry Without Blind Directions. Journal of Geophysical Research: Oceans, 2019, 124, 8605-8625.	2.6	25

ZHONGXIANG ZHAO

#	Article	IF	CITATIONS
19	Flow-Topography Interactions in the Samoan Passage. Oceanography, 2019, 32, 184-193.	1.0	4
20	Observations of the Tasman Sea Internal Tide Beam. Journal of Physical Oceanography, 2018, 48, 1283-1297.	1.7	15
21	Satellite Investigation of the M2 Internal Tide in the Tasman Sea. Journal of Physical Oceanography, 2018, 48, 687-703.	1.7	11
22	The Lifecycle of Semidiurnal Internal Tides over the Northern Mid-Atlantic Ridge. Journal of Physical Oceanography, 2018, 48, 61-80.	1.7	35
23	The Clobal Modeâ€⊋ M ₂ Internal Tide. Journal of Geophysical Research: Oceans, 2018, 123, 7725-7746.	2.6	27
24	Deep Sea Currents Driven by Breaking Internal Tides on the Continental Slope. Geophysical Research Letters, 2018, 45, 6160-6166.	4.0	28
25	Semidiurnal internal tide energy fluxes and their variability in a <scp>G</scp> lobal <scp>O</scp> cean <scp>M</scp> odel and moored observations. Journal of Geophysical Research: Oceans, 2017, 122, 1882-1900.	2.6	29
26	Climate Process Team on Internal Wave–Driven Ocean Mixing. Bulletin of the American Meteorological Society, 2017, 98, 2429-2454.	3.3	235
27	The Clobal Modeâ€1 S ₂ Internal Tide. Journal of Geophysical Research: Oceans, 2017, 122, 8794-8812.	2.6	28
28	Propagation of the Semidiurnal Internal Tide: Phase Velocity Versus Group Velocity. Geophysical Research Letters, 2017, 44, 11,942.	4.0	7
29	Long-range propagation and associated variability of internal tides in the South China Sea. Journal of Geophysical Research: Oceans, 2016, 121, 8268-8286.	2.6	84
30	Internal tide oceanic tomography. Geophysical Research Letters, 2016, 43, 9157-9164.	4.0	27
31	Using CryoSatâ€2 altimeter data to evaluate M ₂ internal tides observed from multisatellite altimetry. Journal of Geophysical Research: Oceans, 2016, 121, 5164-5180.	2.6	15
32	Global Observations of Open-Ocean Mode-1 M2 Internal Tides. Journal of Physical Oceanography, 2016, 46, 1657-1684.	1.7	164
33	Impact of Parameterized Internal Wave Drag on the Semidiurnal Energy Balance in a Global Ocean Circulation Model. Journal of Physical Oceanography, 2016, 46, 1399-1419.	1.7	57
34	Breaking Internal Tides Keep the Ocean in Balance. Eos, 2015, 96, .	0.1	35
35	Inferring internal wave phase speed from multi-satellite observations. , 2014, , .		3
36	Internal solitary wave propagation observed by tandem satellites. Geophysical Research Letters, 2014, 41, 2077-2085.	4.0	50

ZHONGXIANG ZHAO

#	Article	lF	CITATIONS
37	The Sound of Tropical Cyclones. Journal of Physical Oceanography, 2014, 44, 2763-2778.	1.7	23
38	Internal tide radiation from the Luzon Strait. Journal of Geophysical Research: Oceans, 2014, 119, 5434-5448.	2.6	134
39	Internal solitary waves in the China seas observed using satellite remote-sensing techniques: a review and perspectives. International Journal of Remote Sensing, 2014, 35, 3926-3946.	2.9	54
40	Transition from partly standing to progressive internal tides in Monterey Submarine Canyon. Deep-Sea Research Part II: Topical Studies in Oceanography, 2014, 104, 164-173.	1.4	31
41	The Latitudinal Dependence of Shear and Mixing in the Pacific Transiting the Critical Latitude for PSI. Journal of Physical Oceanography, 2013, 43, 3-16.	1.7	46
42	Parametric Subharmonic Instability of the Internal Tide at 29°N. Journal of Physical Oceanography, 2013, 43, 17-28.	1.7	100
43	Internal Tides and Mixing in a Submarine Canyon with Time-Varying Stratification. Journal of Physical Oceanography, 2012, 42, 2121-2142.	1.7	41
44	Mapping Low-Mode Internal Tides from Multisatellite Altimetry. Oceanography, 2012, 25, 42-51.	1.0	53
45	Internal Waves on the Washington Continental Shelf. Oceanography, 2012, 25, 66-79.	1.0	36
46	A perfect focus of the internal tide from the Mariana Arc. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	22
47	Internal tides around the Hawaiian Ridge estimated from multisatellite altimetry. Journal of Geophysical Research, 2011, 116, .	3.3	39
48	Long-Range Propagation of the Semidiurnal Internal Tide from the Hawaiian Ridge. Journal of Physical Oceanography, 2010, 40, 713-736.	1.7	155
49	New Altimetric Estimates of Mode-1 M2 Internal Tides in the Central North Pacific Ocean. Journal of Physical Oceanography, 2009, 39, 1669-1684.	1.7	79
50	Internal solitary waves in the northwestern South China Sea inferred from satellite images. Geophysical Research Letters, 2008, 35, .	4.0	70
51	Global Patterns of Low-Mode Internal-Wave Propagation. Part I: Energy and Energy Flux. Journal of Physical Oceanography, 2007, 37, 1829-1848.	1.7	90
52	Global Patterns of Low-Mode Internal-Wave Propagation. Part II: Group Velocity. Journal of Physical Oceanography, 2007, 37, 1849-1858.	1.7	45
53	Internal waves across the Pacific. Geophysical Research Letters, 2007, 34, .	4.0	135
54	Source and propagation of internal solitary waves in the northeastern South China Sea. Journal of Geophysical Research, 2006, 111, .	3.3	117

ZHONGXIANG ZHAO

#	Article	IF	CITATIONS
55	Estimating parameters of a two-layer stratified ocean from polarity conversion of internal solitary waves observed in satellite SAR images. Remote Sensing of Environment, 2004, 92, 276-287.	11.0	70
56	Technical note: Evidence of the coexistence of upstream and downstream solitary wavetrains in the real atmosphere. International Journal of Remote Sensing, 2004, 25, 4433-4440.	2.9	7
57	Remote sensing evidence for baroclinic tide origin of internal solitary waves in the northeastern South China Sea. Geophysical Research Letters, 2004, 31, n/a-n/a.	4.0	205
58	Satellite observation of internal solitary waves converting polarity. Geophysical Research Letters, 2003, 30, .	4.0	45