ValentÃ- Rodellas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5218275/publications.pdf

Version: 2024-02-01

45 papers 2,156 citations

236925 25 h-index 233421 45 g-index

45 all docs

45 docs citations

45 times ranked

2016 citing authors

#	Article	IF	CITATIONS
1	The GEOTRACES Intermediate Data Product 2017. Chemical Geology, 2018, 493, 210-223.	3.3	257
2	Submarine groundwater discharge as a major source of nutrients to the Mediterranean Sea. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 3926-3930.	7.1	247
3	Submarine groundwater discharge impacts on coastal nutrient biogeochemistry. Nature Reviews Earth & Environment, 2021, 2, 307-323.	29.7	210
4	Submarine groundwater discharge as a source of nutrients and trace metals in a Mediterranean bay (Palma Beach, Balearic Islands). Marine Chemistry, 2014, 160, 56-66.	2.3	103
5	Using the radium quartet to quantify submarine groundwater discharge and porewater exchange. Geochimica Et Cosmochimica Acta, 2017, 196, 58-73.	3.9	84
6	Groundwater and nutrient discharge through karstic coastal springs (<i>Castelló</i> , Spain). Biogeosciences, 2010, 7, 2625-2638.	3.3	74
7	Quantifying Surface Water, Porewater, and Groundwater Interactions Using Tracers: Tracer Fluxes, Water Fluxes, and Endâ€member Concentrations. Water Resources Research, 2018, 54, 2452-2465.	4.2	64
8	Groundwater-driven nutrient inputs to coastal lagoons: The relevance of lagoon water recirculation as a conveyor of dissolved nutrients. Science of the Total Environment, 2018, 642, 764-780.	8.0	64
9	Contribution of Groundwater Discharge to the Coastal Dissolved Nutrients and Trace Metal Concentrations in Majorca Island: Karstic vs Detrital Systems. Environmental Science & Emp; Technology, 2014, 48, 11819-11827.	10.0	60
10	Constraining the temporal variations of Ra isotopes and Rn in the groundwater end-member: Implications for derived SGD estimates. Science of the Total Environment, 2017, 595, 849-857.	8.0	56
11	Submarine groundwater discharge: A significant source of dissolved trace metals to the North Western Mediterranean Sea. Marine Chemistry, 2016, 186, 90-100.	2.3	54
12	Radium isotopes as submarine groundwater discharge (SGD) tracers: Review and recommendations. Earth-Science Reviews, 2021, 220, 103681.	9.1	51
13	Evaluation of 224Ra as a tracer for submarine groundwater discharge in Long Island Sound (NY). Geochimica Et Cosmochimica Acta, 2014, 141, 314-330.	3.9	49
14	Quantifying groundwater discharge from different sources into a Mediterranean wetland by using 222Rn and Ra isotopes. Journal of Hydrology, 2012, 466-467, 11-22.	5.4	48
15	Assessing submarine groundwater discharge (SGD) and nitrate fluxes in highly heterogeneous coastal karst aquifers: Challenges and solutions. Journal of Hydrology, 2018, 557, 222-242.	5 . 4	48
16	Karstic submarine groundwater discharge into the Mediterranean: Radon-based nutrient fluxes in an anchialine cave and a basin-wide upscaling. Geochimica Et Cosmochimica Acta, 2020, 268, 467-484.	3.9	40
17	The influence of a metal-enriched mining waste deposit on submarine groundwater discharge to the coastal sea. Marine Chemistry, 2016, 178, 35-45.	2.3	39
18	The influence of sediment sources on radium-derived estimates of Submarine Groundwater Discharge. Marine Chemistry, 2015, 171, 107-117.	2.3	38

#	Article	IF	Citations
19	The microbial dimension of submarine groundwater discharge: current challenges and future directions. FEMS Microbiology Reviews, 2021, 45, .	8.6	38
20	Conceptual uncertainties in groundwater and porewater fluxes estimated by radon and radium mass balances. Limnology and Oceanography, 2021, 66, 1237-1255.	3.1	36
21	Exchange across the sediment-water interface quantified from porewater radon profiles. Journal of Hydrology, 2018, 559, 873-883.	5.4	35
22	A comparison between water circulation and terrestrially-driven dissolved silica fluxes to the Mediterranean Sea traced using radium isotopes. Geochimica Et Cosmochimica Acta, 2018, 238, 496-515.	3.9	35
23	Assessing the role of submarine groundwater discharge as a source of Sr to the Mediterranean Sea. Geochimica Et Cosmochimica Acta, 2017, 200, 42-54.	3.9	32
24	Submarine groundwater discharge: Natural radioactivity accumulation in a wetland ecosystem. Marine Chemistry, 2013, 156, 61-72.	2.3	30
25	Combining fiber optic DTS, cross-hole ERT and time-lapse induction logging to characterize and monitor a coastal aquifer. Journal of Hydrology, 2020, 588, 125050.	5.4	30
26	Remobilization of dissolved metals from a coastal mine tailing deposit driven by groundwater discharge and porewater exchange. Science of the Total Environment, 2019, 688, 1359-1372.	8.0	25
27	The social implications of Submarine Groundwater Discharge from an Ecosystem Services perspective: A systematic review. Earth-Science Reviews, 2021, 221, 103742.	9.1	25
28	Primary production in coastal lagoons supported by groundwater discharge and porewater fluxes inferred from nitrogen and carbon isotope signatures. Marine Chemistry, 2019, 210, 48-60.	2.3	23
29	Understanding the spatio-temporal variability of phytoplankton biomass distribution in a microtidal Mediterranean estuary. Deep-Sea Research Part II: Topical Studies in Oceanography, 2014, 101, 180-192.	1.4	22
30	Influence of submarine groundwater discharge on 210 Po and 210 Pb bioaccumulation in fish tissues. Journal of Environmental Radioactivity, 2016, 155-156, 46-54.	1.7	21
31	Temporal variability of lagoon–sea water exchange and seawater circulation through a Mediterranean barrier beach. Limnology and Oceanography, 2019, 64, 2059-2080.	3.1	20
32	Enhanced Growth Rates of the Mediterranean Mussel in a Coastal Lagoon Driven by Groundwater Inflow. Frontiers in Marine Science, 2019, 6, .	2.5	20
33	Delineating coastal groundwater discharge processes in a wetland area by means of electrical resistivity imaging, ²²⁴ Ra and ²²² Rn. Hydrological Processes, 2014, 28, 2382-2395.	2.6	19
34	A multidisciplinary approach to characterizing coastal alluvial aquifers to improve understanding of seawater intrusion and submarine groundwater discharge. Journal of Hydrology, 2022, 607, 127510.	5.4	19
35	Groundwater discharge as a driver of methane emissions from Arctic lakes. Nature Communications, 2022, 13, .	12.8	18
36	Submarine groundwater discharge at Forsmark, Gulf of Bothnia, provided by Ra isotopes. Marine Chemistry, 2017, 196, 162-172.	2.3	17

#	Article	IF	CITATIONS
37	Guidelines and Limits for the Quantification of Ra Isotopes and Related Radionuclides With the Radium Delayed Coincidence Counter (RaDeCC). Journal of Geophysical Research: Oceans, 2020, 125, e2019JC015544.	2.6	16
38	²²⁶ Ra determination via the rate of ²²² Rn ingrowth with the Radium Delayed Coincidence Counter (RaDeCC). Limnology and Oceanography: Methods, 2013, 11, 594-603.	2.0	15
39	New perspectives on the use of 224Ra/228Ra and 222Rn/226Ra activity ratios in groundwater studies. Journal of Hydrology, 2021, 596, 126043.	5.4	13
40	Intertidal percolation through beach sands as a source of ^{224,223} Ra to Long Island Sound, New York, and Connecticut, United States. Journal of Marine Research, 2015, 73, 123-140.	0.3	12
41	Seasonal variation and sources of dissolved trace metals in Ma \tilde{A}^3 Harbour, Minorca Island. Science of the Total Environment, 2016, 565, 191-199.	8.0	12
42	A multi-method approach for groundwater resource assessment in coastal carbonate (karst) aquifers: the case study of Sierra Almijara (southern Spain). Hydrogeology Journal, 2018, 26, 41-56.	2.1	11
43	Temporal variations in porewater fluxes to a coastal lagoon driven by wind waves and changes in lagoon water depths. Journal of Hydrology, 2020, 581, 124363.	5. 4	11
44	Radium Mass Balance Sensitivity Analysis for Submarine Groundwater Discharge Estimation in Semi-Enclosed Basins: The Case Study of Long Island Sound. Frontiers in Environmental Science, 2020, 8, .	3.3	8
45	Closing the Global Marine ²²⁶ Ra Budget Reveals the Biological Pump as a Dominant Removal Flux in the Upper Ocean. Geophysical Research Letters, 2022, 49, .	4.0	7