Alexandre Bougdour

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5217296/publications.pdf

Version: 2024-02-01

32 papers 2,832 citations

236925 25 h-index 32 g-index

36 all docs 36 docs citations

36 times ranked 2408 citing authors

#	Article	IF	CITATIONS
1	Double drugging of prolyl-tRNA synthetase provides a new paradigm for anti-infective drug development. PLoS Pathogens, 2022, 18, e1010363.	4.7	12
2	A plant-like mechanism coupling m6A reading to polyadenylation safeguards transcriptome integrity and developmental gene partitioning in Toxoplasma. ELife, $2021,10,10$	6.0	19
3	Coupling Polar Adhesion with Traction, Spring, and Torque Forces Allows High-Speed Helical Migration of the Protozoan Parasite <i>Toxoplasma</i> . ACS Nano, 2020, 14, 7121-7139.	14.6	30
4	A MORC-driven transcriptional switch controls Toxoplasma developmental trajectories and sexual commitment. Nature Microbiology, 2020, 5, 570-583.	13.3	78
5	Target Identification of an Antimalarial Oxaborole Identifies AN13762 as an Alternative Chemotype for Targeting CPSF3 in Apicomplexan Parasites. IScience, 2020, 23, 101871.	4.1	26
6	Metal-captured inhibition of pre-mRNA processing activity by CPSF3 controls <i>Cryptosporidium</i> infection. Science Translational Medicine, 2019, 11, .	12.4	44
7	The Toxoplasma effector TEEGR promotes parasite persistence by modulating NF-κB signalling via EZH2. Nature Microbiology, 2019, 4, 1208-1220.	13.3	79
8	Characterization of a Toxoplasma effector uncovers an alternative GSK3 \hat{l}^2 -catenin-regulatory pathway of inflammation. ELife, 2018, 7, .	6.0	64
9	Targeting <i>Toxoplasma gondii</i> <scp>CPSF</scp> 3 as a new approach to control toxoplasmosis. EMBO Molecular Medicine, 2017, 9, 385-394.	6.9	61
10	Structural Basis for the Subversion of MAP Kinase Signaling by an Intrinsically Disordered Parasite Secreted Agonist. Structure, 2017, 25, 16-26.	3.3	41
11	Modifications at K31 on the lateral surface of histone H4 contribute to genome structure and expression in apicomplexan parasites. ELife, 2017, 6, .	6.0	29
12	The aspartyl protease TgASP5 mediates the export of the <i>Toxoplasma </i> GRA16 and GRA24 effectors into host cells. Cellular Microbiology, 2016, 18, 151-167.	2.1	97
13	<i>Toxoplasma gondii</i> TgIST co-opts host chromatin repressors dampening STAT1-dependent gene regulation and IFN-γ–mediated host defenses. Journal of Experimental Medicine, 2016, 213, 1779-1798.	8.5	173
14	Cryptosporidium and Toxoplasma Parasites Are Inhibited by a Benzoxaborole Targeting Leucyl-tRNA Synthetase. Antimicrobial Agents and Chemotherapy, 2016, 60, 5817-5827.	3.2	55
15	Toxoplasma 's ways of manipulating the host transcriptome via secreted effectors. Current Opinion in Microbiology, 2015, 26, 24-31.	5.1	105
16	The Toxoplasma Dense Granule Proteins GRA17 and GRA23 Mediate the Movement of Small Molecules between the Host and the Parasitophorous Vacuole. Cell Host and Microbe, 2015, 17, 642-652.	11.0	208
17	<i> $>$ T $<$ i $><$ i $>$ oxoplasma $<$ i $>$ exports dense granule proteins beyond the vacuole to the host cell nucleus and rewires the host genome expression. Cellular Microbiology, 2014, 16, 334-343.	2.1	60
18	miR-146a and miR-155 Delineate a MicroRNA Fingerprint Associated with Toxoplasma Persistence in the Host Brain. Cell Reports, 2014, 6, 928-937.	6.4	96

#	Article	IF	CITATIONS
19	Flexible Synthesis and Evaluation of Diverse Anti-Apicomplexa Cyclic Peptides. Journal of Organic Chemistry, 2013, 78, 3655-3675.	3.2	23
20	Host Cell Subversion by Toxoplasma GRA16, an Exported Dense Granule Protein that Targets the Host Cell Nucleus and Alters Gene Expression. Cell Host and Microbe, 2013, 13, 489-500.	11.0	209
21	Anti-adaptors provide multiple modes for regulation of the RssB adaptor protein. Genes and Development, 2013, 27, 2722-2735.	5.9	59
22	A <i>Toxoplasma</i> dense granule protein, GRA24, modulates the early immune response to infection by promoting a direct and sustained host p38 MAPK activation. Journal of Experimental Medicine, 2013, 210, 2071-2086.	8.5	252
23	Chromatin modifications: implications in the regulation of gene expression in <i>Toxoplasma gondii < /i>. Cellular Microbiology, 2010, 12, 413-423.</i>	2.1	46
24	Activity of the Histone Deacetylase Inhibitor FR235222 on <i>Toxoplasma gondii</i> : Inhibition of Stage Conversion of the Parasite Cyst Form and Study of New Derivative Compounds. Antimicrobial Agents and Chemotherapy, 2010, 54, 4843-4850.	3.2	55
25	A DNA damage response in <i>Escherichia coli</i> i> involving the alternative sigma factor, RpoS. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 611-616.	7.1	79
26	Drug inhibition of HDAC3 and epigenetic control of differentiation in Apicomplexa parasites. Journal of Experimental Medicine, 2009, 206, 953-966.	8.5	154
27	Multiple pathways for regulation of lf (sup>S(/sup> (RpoS) stability in (i>Escherichia coli(/i> via the action of multiple antiâ e daptors. Molecular Microbiology, 2008, 68, 298-313.	2.5	150
28	<i>Toxoplasma gondii</i> gene expression is under the control of regulatory pathways acting through chromatin structure. Parasite, 2008, 15, 206-210.	2.0	6
29	ppGpp regulation of RpoS degradation via anti-adaptor protein IraP. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 12896-12901.	7.1	124
30	Modulating RssB activity: IraP, a novel regulator of ÂS stability in Escherichia coli. Genes and Development, 2006, 20, 884-897.	5.9	160
31	The PhoP/PhoQ two-component system stabilizes the alternative sigma factor RpoS in Salmonella enterica. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 13503-13508.	7.1	110
32	Crl, a Low Temperature-induced Protein in Escherichia coli That Binds Directly to the Stationary Phase $\ddot{l}f$ Subunit of RNA Polymerase. Journal of Biological Chemistry, 2004, 279, 19540-19550.	3.4	119