H John B Birks

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5215867/publications.pdf

Version: 2024-02-01

7745 4658 26,994 291 85 150 citations h-index g-index papers 303 303 303 16338 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Holocene moisture evolution in arid central Asia and its out-of-phase relationship with Asian monsoon history. Quaternary Science Reviews, 2008, 27, 351-364.	3.0	967
2	Climate-driven regime shifts in the biological communities of arctic lakes. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 4397-4402.	7.1	828
3	Title is missing!. Journal of Paleolimnology, 1998, 20, 307-332.	1.6	785
4	Recent Warming Reverses Long-Term Arctic Cooling. Science, 2009, 325, 1236-1239.	12.6	585
5	Agroforestry: a refuge for tropical biodiversity?. Trends in Ecology and Evolution, 2008, 23, 261-267.	8.7	540
6	What Is Natural? The Need for a Long-Term Perspective in Biodiversity Conservation. Science, 2006, 314, 1261-1265.	12.6	539
7	East Asian summer monsoon precipitation variability since the last deglaciation. Scientific Reports, 2015, 5, 11186.	3.3	534
8	Title is missing!. Journal of Paleolimnology, 1997, 18, 395-420.	1.6	465
9	Chironomid-inferred air temperatures from Lateglacial and Holocene sites in north-west Europe: progress and problems. Quaternary Science Reviews, 2001, 20, 1723-1741.	3.0	344
10	July mean temperature and annual precipitation trends during the Holocene in the Fennoscandian tree-line area: pollen-based climate reconstructions. Holocene, 2001, 11, 527-539.	1.7	333
11	The intercept is a poor estimate of a calibrated radiocarbon age. Holocene, 2004, 14, 296-298.	1.7	327
12	Alpines, trees, and refugia in Europe. Plant Ecology and Diversity, 2008, 1, 147-160.	2.4	318
13	An Assessment of Chironomidae as Quantitative Indicators of Past Climatic Change. Canadian Journal of Fisheries and Aquatic Sciences, 1991, 48, 975-987.	1.4	311
14	Recent increases in species richness and shifts in altitudinal distributions of Norwegian mountain plants. Holocene, 2003, 13, 1-6.	1.7	310
15	Strengths and Weaknesses of Quantitative Climate Reconstructions Based on Late-Quaternary Biological Proxies. Open Ecology Journal, 2011, 3, 68-110.	2.0	298
16	Holocene Isochrone Maps and Patterns of Tree-Spreading in the British Isles. Journal of Biogeography, 1989, 16, 503.	3.0	297
17	Biodiversity baselines, thresholds and resilience: testing predictions and assumptions using palaeoecological data. Trends in Ecology and Evolution, 2010, 25, 583-591.	8.7	297
18	Multi-proxy studies in palaeolimnology. Vegetation History and Archaeobotany, 2006, 15, 235-251.	2.1	294

#	Article	IF	CITATIONS
19	All age–depth models are wrong: but how badly?. Quaternary Science Reviews, 2004, 23, 1-5.	3.0	274
20	Relationships between calibrated ages and depth in stratigraphical sequences: an estimation procedure by mixed-effect regression. Holocene, 2005, 15, 612-618.	1.7	269
21	Title is missing!. Journal of Paleolimnology, 2000, 23, 91-114.	1.6	257
22	Topographyâ€driven isolation, speciation and a global increase of endemism with elevation. Global Ecology and Biogeography, 2016, 25, 1097-1107.	5.8	243
23	Last nine-thousand years of temperature variability in Northern Europe. Climate of the Past, 2009, 5, 523-535.	3.4	238
24	The secret assumption of transfer functions: problems with spatial autocorrelation in evaluating model performance. Quaternary Science Reviews, 2005, 24, 2173-2179.	3.0	226
25	Title is missing!. Journal of Paleolimnology, 2000, 23, 77-89.	1.6	221
26	Assessment of freshwater diatoms as quantitative indicators of past climatic change in the Yukon and Northwest Territories, Canada. Journal of Paleolimnology, 1995, 13, 21-49.	1.6	220
27	Quantification of biotic responses to rapid climatic changes around the Younger Dryas — a synthesis. Palaeogeography, Palaeoclimatology, Palaeoecology, 2000, 159, 313-347.	2.3	215
28	Holocene land-cover reconstructions for studies on land cover-climate feedbacks. Climate of the Past, 2010, 6, 483-499.	3.4	214
29	Younger Dryas and Allerød summer temperatures at Gerzensee (Switzerland) inferred from fossil pollen and cladoceran assemblages. Palaeogeography, Palaeoclimatology, Palaeoecology, 2000, 159, 349-361.	2.3	213
30	Looking forward through the past: identification of 50 priority research questions in palaeoecology. Journal of Ecology, 2014, 102, 256-267.	4.0	212
31	Evaluation of transfer functions in spatially structured environments. Quaternary Science Reviews, 2009, 28, 1309-1316.	3.0	201
32	Quantitative multiproxy assessment of long-term patterns of Holocene environmental change from a small lake near Abisko, northern Sweden. Holocene, 2002, 12, 481-496.	1.7	200
33	Local temperatures inferred from plant communities suggest strong spatial buffering of climate warming across <scp>N</scp> orthern <scp>E</scp> urope. Global Change Biology, 2013, 19, 1470-1481.	9.5	200
34	NUMERICAL METHODS IN QUATERNARY PALAEOECOLOGY I. ZONATION OF POLLEN DIAGRAMS. New Phytologist, 1972, 71, 961-979.	7.3	199
35	Title is missing!. Journal of Paleolimnology, 1998, 19, 443-463.	1.6	195
36	Dispersal Limitations Matter for Microbial Morphospecies. Science, 2006, 312, 1015-1015.	12.6	195

#	Article	IF	CITATIONS
37	A novel method for assessing the statistical significance of quantitative reconstructions inferred from biotic assemblages. Quaternary Science Reviews, 2011, 30, 1272-1278.	3.0	188
38	How Much Acidification Has Occurred in Adirondack Region Lakes (New York, USA) since Preindustrial Times?. Canadian Journal of Fisheries and Aquatic Sciences, 1992, 49, 128-141.	1.4	185
39	An expanded calibration model for inferring lakewater and air temperatures from fossil chironomid assemblages in northern Fennoscandia. Holocene, 1999, 9, 279-294.	1.7	184
40	Holocene changes in atmospheric circulation recorded in the oxygen-isotope stratigraphy of lacustrine carbonates from northern Sweden. Holocene, 2002, 12, 339-351.	1.7	179
41	Lateâ€Wisconsinan Vegetational History at Wolf Creek, Central Minnesota. Ecological Monographs, 1976, 46, 395-429.	5 . 4	178
42	How to maximize biological diversity in nature reserve selection: Vascular plants and breeding birds in deciduous woodlands, western Norway. Biological Conservation, 1993, 66, 131-138.	4.1	175
43	Chironomids as a tool for inferring Holocene climate: an assessment based on six sites in southern Scandinavia. Quaternary Science Reviews, 2005, 24, 1429-1462.	3.0	174
44	Tracing lake trophic history with a chironomid-total phosphorus inference model. Freshwater Biology, 2001, 46, 513-533.	2.4	172
45	Title is missing!. Journal of Paleolimnology, 2002, 28, 161-179.	1.6	169
46	Holocene Climate Reconstructions from the Fennoscandian Tree-Line Area Based on Pollen Data from Toskaljavri. Quaternary Research, 2002, 57, 191-199.	1.7	165
47	A modern pollen-climate calibration set from northern Europe: developing and testing a tool for palaeoclimatological reconstructions. Journal of Biogeography, 2004, 31, 251-267.	3.0	163
48	Pollenâ€based quantitative reconstructions of Holocene regional vegetation cover (plantâ€functional) Tj ETQq0 676-697.	0 0 rgBT /0 9 . 5	Overlock 10 T 161
49	A comparison of altitudinal species richness patterns of bryophytes with other plant groups in Nepal, Central Himalaya. Journal of Biogeography, 2007, 34, 1907-1915.	3.0	157
50	Holocene climatic change reconstructed from diatoms, chironomids, pollen and near-infrared spectroscopy at an alpine lake (Sjuodjijaure) in northern Sweden. Holocene, 2001, 11, 551-562.	1.7	153
51	Does pollen-assemblage richness reflect floristic richness? A review of recent developments and future challenges. Review of Palaeobotany and Palynology, 2016, 228, 1-25.	1.5	152
52	A 274-lake calibration data-set and inference model for chironomid-based summer air temperature reconstruction in Europe. Quaternary Science Reviews, 2011, 30, 3445-3456.	3.0	144
53	Establishing a terrestrial chronological framework as a basis for biostratigraphical comparisons. Quaternary Science Reviews, 2001, 20, 1583-1592.	3.0	143
54	Stay or go – how topographic complexity influences alpine plant population and community responses to climate change. Perspectives in Plant Ecology, Evolution and Systematics, 2018, 30, 41-50.	2.7	141

#	Article	IF	CITATIONS
55	Application of modern pollen/land-use relationships to the interpretation of pollen diagramsâ€"reconstructions of land-use history in south Sweden, 3000-0 BP. Review of Palaeobotany and Palynology, 1994, 82, 47-73.	1.5	138
56	A modern pollen–climate calibration set based on lake sediments from the Tibetan Plateau and its application to a Late Quaternary pollen record from the Qilian Mountains. Journal of Biogeography, 2010, 37, 752-766.	3.0	138
57	Biological responses to rapid climate change at the Younger Dryas—Holocene transition at Kråkenes, western Norway. Holocene, 2008, 18, 19-30.	1.7	135
58	Holocene mean July temperature and winter precipitation in western Norvay inferred from palynological and glaciological lake-sediment proxies. Holocene, 2005, 15, 177-189.	1.7	132
59	Validation of climate model-inferred regional temperature change for late-glacial Europe. Nature Communications, 2014, 5, 4914.	12.8	129
60	Prehistoric increases in the pH of acid-sensitive Swedish lakes caused by land-use changes. Nature, 1993, 362, 824-827.	27.8	128
61	The altitudinal gradient of vascular plant richness in Aurland, western Norway. Ecography, 1999, 22, 548-566.	4.5	126
62	Contributions of Quaternary palaeoecology to nature conservation. Journal of Vegetation Science, 1996, 7, 89-98.	2.2	125
63	THE IDENTIFICATION OF BETULA NANA POLLEN. New Phytologist, 1968, 67, 309-314.	7.3	121
64	Title is missing!. Journal of Paleolimnology, 1999, 22, 291-317.	1.6	119
65	Climate variability and ecosystem dynamics of remote alpine and arctic lakes: the MOLAR project. Journal of Paleolimnology, 2002, 28, 1-6.	1.6	118
66	Recent vegetation changes at the highâ€latitude tree line ecotone are controlled by geomorphological disturbance, productivity and diversity. Global Ecology and Biogeography, 2010, 19, 810-821.	5.8	118
67	Mind the gap: how open were European primeval forests?. Trends in Ecology and Evolution, 2005, 20, 154-156.	8.7	117
68	Orchid species richness along Himalayan elevational gradients. Journal of Biogeography, 2011, 38, 1821-1833.	3.0	117
69	From Classical to Canonical Ordination. Developments in Paleoenvironmental Research, 2012, , 201-248.	8.0	112
70	Holocene changes in vegetation composition in northern Europe: why quantitative pollen-based vegetation reconstructions matter. Quaternary Science Reviews, 2014, 90, 199-216.	3.0	112
71	Identifying the driving factors behind observed elevational range shifts on <scp>E</scp> uropean mountains. Global Ecology and Biogeography, 2014, 23, 876-884.	5.8	110
72	Tree Migration-Rates: Narrowing the Gap between Inferred Post-Glacial Rates and Projected Rates. PLoS ONE, 2013, 8, e71797.	2.5	110

#	Article	IF	CITATIONS
73	The Present Flora and Vegetation of the Moraines of the Klutlan Glacier, Yukon Territory, Canada: A Study in Plant Succession. Quaternary Research, 1980, 14, 60-86.	1.7	106
74	Arctic Holocene proxy climate database $\hat{a}\in$ " new approaches to assessing geochronological accuracy and encoding climate variables. Climate of the Past, 2014, 10, 1605-1631.	3.4	105
75	Contributions of Quaternary botany to modern ecology and biogeography. Plant Ecology and Diversity, 2019, 12, 189-385.	2.4	103
76	Holocene vegetation and climate history on a continental-oceanic transect in northern Fennoscandia based on pollen and plant macrofossils. Boreas, 2004, 33, 211-223.	2.4	103
77	Quantitative Environmental Reconstructions from Biological Data. Developments in Paleoenvironmental Research, 2012, , 431-494.	8.0	100
78	Postglacial history of alder (Alnus glutinosa (L.) Gaertn.) in the British Isles. Journal of Quaternary Science, 1990, 5, 123-133.	2.1	99
79	Quantitative reconstruction of precipitation changes on the NE Tibetan Plateau since the Last Glacial Maximum – extending the concept of pollen source area to pollen-based climate reconstructions from large lakes. Climate of the Past, 2014, 10, 21-39.	3.4	99
80	Quantifying Recent Ecological Changes in Remote Lakes of North America and Greenland Using Sediment Diatom Assemblages. PLoS ONE, 2010, 5, e10026.	2.5	98
81	Quantifying the effects of land use and climate on Holocene vegetation in Europe. Quaternary Science Reviews, 2017, 171, 20-37.	3.0	97
82	The impact of the Laacher See Tephra on terrestrial and aquatic ecosystems in the Black Forest, southern germany. Journal of Quaternary Science, 1993, 8, 263-276.	2.1	95
83	Recent Environmental Change and Human Impact on Svalbard: The Lake-Sediment Geochemical Record. Journal of Paleolimnology, 2004, 31, 515-530.	1.6	94
84	PALEOECOLOGY: The Rise and Fall of Forests. Science, 2004, 305, 484-485.	12.6	90
85	Estimating the amount of compositional change in late-Quaternary pollen-stratigraphical data. Vegetation History and Archaeobotany, 2006, 16, 197-202.	2.1	89
86	The pace of Holocene vegetation change – testing for synchronous developments. Quaternary Science Reviews, 2011, 30, 2805-2814.	3.0	88
87	Quaternary palaeoecology and vegetation scienceâ€" current contributions and possible future developments. Review of Palaeobotany and Palynology, 1993, 79, 153-177.	1.5	87
88	Biotic homogenization of upland vegetation: patterns and drivers at multiple spatial scales over five decades. Journal of Vegetation Science, 2012, 23, 755-770.	2.2	87
89	The Holocene palaeolimnology of SÃgistalsee and its environmental history – a synthesis. Journal of Paleolimnology, 2003, 30, 333-342.	1.6	86
90	Benthonic foraminiferal distributions and quantitative transfer functions for the northwest European continental margin. Marine Micropaleontology, 2004, 53, 197-226.	1.2	86

#	Article	IF	Citations
91	The Dynamics of Chironomidae (Insecta: Diptera) Assemblages in Response to Environmental Change during the past 700 years on Svalbard. Journal of Paleolimnology, 2004, 31, 483-498.	1.6	86
92	Late-glacial pollen and diatom changes in response to two different environmental perturbations: volcanic eruption and Younger Dryas cooling. Journal of Paleolimnology, 1995, 14, 23-47.	1.6	85
93	A brief history of climate – the northern seas from the Last Glacial Maximum to global warming. Quaternary Science Reviews, 2014, 106, 225-246.	3.0	85
94	Ecological palaeoecology and conservation biology: controversies, challenges, and compromises. International Journal of Biodiversity Science, Ecosystem Services & Management, 2012, 8, 292-304.	2.9	84
95	High resolution Lateglacial and early-Holocene summer air temperature records from Scotland inferred from chironomid assemblages. Quaternary Science Reviews, 2012, 41, 67-82.	3.0	84
96	Lake-Sediment Records of Recent Environmental Change on Svalbard: Results of Diatom Analysis. Journal of Paleolimnology, 2004, 31, 445-466.	1.6	83
97	When Did Acid-Sensitive Adirondack Lakes (New York, USA) Begin to Acidify and Are They Still Acidifying?. Canadian Journal of Fisheries and Aquatic Sciences, 1994, 51, 1550-1568.	1.4	81
98	Glacial legacies on interglacial vegetation at the Pliocene-Pleistocene transition in NE Asia. Nature Communications, 2016, 7, 11967.	12.8	81
99	The human dimension of biodiversity changes on islands. Science, 2021, 372, 488-491.	12.6	81
100	A comparative ecological study of Norwegian mountain plants in relation to possible future climatic change. Journal of Biogeography, 1997, 24, 127-152.	3.0	80
101	The distribution and abundance of chironomids in high-latitude Eurasian lakes with respect to temperature and continentality: development and application of new chironomid-based climate-inference models in northern Russia. Quaternary Science Reviews, 2011, 30, 1122-1141.	3.0	80
102	Modern Pollen Assemblages and Vegetational History of the Moraines of the Klutlan Glacier and Its Surroundings, Yukon Territory, Canada. Quaternary Research, 1980, 14, 101-129.	1.7	79
103	Assessing Trends in Fishery Resources and Lake Water Aluminum from Paleolimnological Analyses of Siliceous Algae. Canadian Journal of Fisheries and Aquatic Sciences, 1992, 49, 116-127.	1.4	79
104	SCALED CHRYSOPHYTES (CHRYSOPHYCEAE AND SYNUROPHYCEAE) FROM ADIRONDACK DRAINAGE LAKES AND THEIR RELATIONSHIP TO ENVIRONMENTAL VARIABLES1. Journal of Phycology, 1992, 28, 162-178.	2.3	79
105	Palaeolimnological evidence for recent climatic change in lakes from the northern Urals, arctic Russia. Journal of Paleolimnology, 2005, 33, 463-482.	1.6	79
106	Present-day temperatures in northern Scandinavia during the last glaciation. Geology, 2007, 35, 987.	4.4	77
107	The importance of pollen and diatom taxonomic precision in quantitative palaeoenvironmental reconstructions. Review of Palaeobotany and Palynology, 1994, 83, 107-117.	1.5	76
108	Holocene environmental history and climate of R�t�sj�en, a low-alpine lake in south-central Norway. Journal of Paleolimnology, 2005, 33, 129-153.	1.6	75

#	Article	IF	Citations
109	Holocene forest development along the Setesdal valley, southern Norway, reconstructed from macrofossil and pollen evidence. Vegetation History and Archaeobotany, 2006, 15, 65-85.	2.1	75
110	Modern pollen–plant richness and diversity relationships exist along a vegetational gradient in southern Norway. Holocene, 2016, 26, 163-175.	1.7	75
111	Soil Development on Recent End Moraines of the Klutlan Glacier, Yukon Territory, Canada. Quaternary Research, 1980, 14, 87-100.	1.7	74
112	How have studies of ancient <scp>DNA</scp> from sediments contributed to the reconstruction ofÂQuaternary floras?. New Phytologist, 2016, 209, 499-506.	7.3	74
113	Evolution of vegetation and climate variability on the Tibetan Plateau over the past 1.74 million years. Science Advances, 2020, 6, eaay6193.	10.3	74
114	Title is missing!. Journal of Paleolimnology, 2000, 23, 21-34.	1.6	73
115	Spatial structure of the 8200 cal yr BP event in northern Europe. Climate of the Past, 2007, 3, 225-236.	3.4	71
116	Effect of uneven sampling along an environmental gradient on transfer-function performance. Journal of Paleolimnology, 2011, 46, 99-106.	1.6	71
117	Statistical approaches to interpreting diversity patterns in the Norwegian mountain flora. Ecography, 1996, 19, 332-340.	4.5	70
118	Quantitative palaeotemperature records inferred from fossil pollen and chironomid assemblages from Lake GilltjÄ r nen, northern central Sweden. Journal of Quaternary Science, 2006, 21, 831-841.	2.1	69
119	Responses of Diatom and Chrysophyte Assemblages in Lake 227 Sediments to Experimental Eutrophication. Canadian Journal of Fisheries and Aquatic Sciences, 1994, 51, 2300-2311.	1.4	68
120	Regional climate model simulations for Europe at 6 and 0.2 k BP: sensitivity to changes in anthropogenic deforestation. Climate of the Past, 2014, 10, 661-680.	3.4	68
121	Ecological memory at millennial timeâ€scales: the importance of data constraints, species longevity and niche features. Ecography, 2020, 43, 1-10.	4.5	68
122	Numerical analysis of pollen samples from central Canada: A comparison of methods. Review of Palaeobotany and Palynology, 1975, 20, 133-169.	1.5	67
123	Late Wisconsin Vegetational and Climatic History at Kylen Lake, Northeastern Minnesota. Quaternary Research, 1981, 16, 322-355.	1.7	67
124	Diatom-based water chemistry reconstructions from northern Sweden: a comparison of reconstruction techniques. Journal of Paleolimnology, 1996, 15, 65.	1.6	67
125	How important is plot relocation accuracy when interpreting re-visitation studies of vegetation change?. Plant Ecology and Diversity, 2010, 3, 1-8.	2.4	67
126	Chironomidae (Insecta: Diptera) succession in Żabieniec bog and its palaeo-lake (central Poland) through the Late Weichselian and Holocene. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 307, 150-167.	2.3	67

#	Article	lF	CITATIONS
127	Predicting changes in Fennoscandian vascular-plant species richness as a result of future climatic change. Journal of Biogeography, 1998, 25, 111-112.	3.0	64
128	Are cladoceran fossils in lake sediment samples a biased reflection of the communities from which they are derived? Journal of Paleolimnology, 2007, 38, 157-181.	1.6	63
129	Numerical analysis of modern and fossil pollen spectra as a tool for elucidating the nature of fine-scale human activities in boreal areas. Vegetation History and Archaeobotany, 1996, 5, 257.	2.1	62
130	The environmental impact of the Minoan eruption of Santorini (Thera): statistical analysis of palaeoecological data from Golbisar, southwest Turkey. Holocene, 2002, 12, 431-444.	1.7	62
131	A multi-proxy study of lake-development in response to catchment changes during the Holocene at Lochnagar, north-east Scotland. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 221, 175-201.	2.3	62
132	Holocene land-cover changes on the Tibetan Plateau. Holocene, 2010, 20, 91-104.	1.7	62
133	Exploring Holocene continentality changes in Fennoscandia using present and past tree distributions. Quaternary Science Reviews, 2008, 27, 1296-1308.	3.0	61
134	Aquatic Biota and the Detection of Climate Change: Are there Consistent Aquatic Ecotones?. Journal of Paleolimnology, 2006, 35, 507-518.	1.6	59
135	Recent Environmental Change and Atmospheric Contamination on Svalbard as Recorded in Lake Sediments – Synthesis and General Conclusions. Journal of Paleolimnology, 2004, 31, 531-546.	1.6	58
136	THE DISTRIBUTION OF EUROPEAN PTERIDOPHYTES: A NUMERICAL ANALYSIS. New Phytologist, 1976, 77, 257-287.	7.3	57
137	Title is missing!. Plant Ecology, 2002, 162, 233-245.	1.6	57
138	Fine-scale changes in vegetation composition in a boreal mire over 50 years. Journal of Ecology, 2011, 99, 1179-1189.	4.0	57
139	A new approach for reconstructing glacier variability based on lake sediments recording input from more than one glacier. Quaternary Research, 2012, 77, 192-204.	1.7	57
140	INWASHED POLLEN SPECTRA AT LOCH FADA, ISLE OF SKYE. New Phytologist, 1970, 69, 807-820.	7.3	56
141	From cold to cool in northernmost Norway: Lateglacial and early Holocene multi-proxy environmental and climate reconstructions from Jansvatnet, Hammerfest. Quaternary Science Reviews, 2012, 33, 100-120.	3.0	56
142	Modern pollen rain and vegetation of the St. Elias Mountains, Yukon Territory. Canadian Journal of Botany, 1977, 55, 2367-2382.	1.1	54
143	Plant species richness in Fennoscandia: evaluating the relative importance of climate and history. Nordic Journal of Botany, 1999, 19, 489-503.	0.5	54
144	Identification of Picea pollen of Late Quaternary age in eastern North America: a numerical approach. Canadian Journal of Botany, 1980, 58, 2043-2058.	1.1	52

#	Article	IF	Citations
145	Effects of within-lake variability of fossil assemblages on quantitative chironomid-inferred temperature reconstruction. Palaeogeography, Palaeoclimatology, Palaeoecology, 2003, 199, 95-106.	2.3	52
146	Long-Term Effects of Reclamation Treatments on Plant Succession in Iceland. Restoration Ecology, 2004, 12, 268-278.	2.9	52
147	Numerical methods for the analysis of diatom assemblage data. , 2010, , 23-54.		52
148	Recent and possible future mathematical developments in quantitative palaeoecology. Palaeogeography, Palaeoclimatology, Palaeoecology, 1985, 50, 107-147.	2.3	51
149	AN INTERGLACIAL PEAT AT FUGLA NESS, SHETLAND. New Phytologist, 1969, 68, 777-796.	7.3	50
150	Holocene palaeoclimate reconstructions at Vanndalsvatnet, western Norway, with particular reference to the 8200 cal. yr BP event. Holocene, 2006, 16, 717-729.	1.7	50
151	4 $\hat{A}^{\circ}\text{C}$ and beyond: what did this mean for biodiversity in the past?. Systematics and Biodiversity, 2010, 8, 3-9.	1.2	50
152	Regional consistency in Lateglacial chironomid-inferred temperatures from five sites in north-west England. Quaternary Science Reviews, 2010, 29, 1528-1538.	3.0	50
153	Chironomidâ€inferred lateâ€glacial summer air temperatures from Lough Nadourcan, Co. Donegal, Ireland. Journal of Quaternary Science, 2010, 25, 1200-1210.	2.1	49
154	Did treeâ€ <i>Betula</i> , <i>Pinus</i> and <i>Picea</i> survive the last glaciation along the west coast of Norway? A review of the evidence, in light of Kullman (2002). Journal of Biogeography, 2005, 32, 1461-1471.	3.0	48
155	One hundred years of Quaternary pollen analysis 1916–2016. Vegetation History and Archaeobotany, 2018, 27, 271-309.	2.1	48
156	Variability in thermal and UVâ€B energy fluxes through time and their influence on plant diversity and speciation. Journal of Biogeography, 2009, 36, 1630-1644.	3.0	47
157	Driving forces of mid-Holocene vegetation shifts on the upper Tibetan Plateau, with emphasis on changes in atmospheric CO2 concentrations. Quaternary Science Reviews, 2011, 30, 1907-1917.	3.0	47
158	Comment on "Glacial Survival of Boreal Trees in Northern Scandinavia― Science, 2012, 338, 742-742.	12.6	47
159	A North European pollen–climate calibration set: analysing the climatic responses of a biological proxy using novel regression tree methods. Quaternary Science Reviews, 2012, 45, 95-110.	3.0	47
160	Challenges in the presentation and analysis of plant-macrofossil stratigraphical data. Vegetation History and Archaeobotany, 2014, 23, 309-330.	2.1	47
161	Assessing the representativeness of nature reserves using multivariate analysis: Vascular plants and breeding birds in deciduous forests, western Norway. Biological Conservation, 1993, 65, 121-132.	4.1	46
162	Quantitative summer-temperature reconstructions for the last 2000Âyears based on pollen-stratigraphical data from northern Fennoscandia. Journal of Paleolimnology, 2009, 41, 43-56.	1.6	46

#	Article	IF	CITATIONS
163	Quantification of UV-B flux through time using UV-B-absorbing compounds contained in fossil Pinus sporopollenin. New Phytologist, 2011, 192, 553-560.	7.3	46
164	Evaluating the indicator value of Tibetan pollen taxa for modern vegetation and climate. Review of Palaeobotany and Palynology, 2010, 160, 197-208.	1.5	45
165	Briksdalsbreen, western Norway: climatic effects on the terminal response of a temperate glacier between AD 1901 and 1994. Holocene, 1995, 5, 343-347.	1.7	43
166	Recent Environmental Change and Atmospheric Contamination on Svalbard as Recorded in Lake Sediments – an Introduction. Journal of Paleolimnology, 2004, 31, 403-410.	1.6	43
167	Holocene pollen stratigraphy of southern Sweden: a reappraisal using numerical methods. Boreas, 1979, 8, 257-279.	2.4	43
168	Composition and formation of laminated sediments in Diss Mere, Norfolk, England. Boreas, 1984, 13, 13-28.	2.4	43
169	Holocene vegetation dynamics and inferred climate changes at Svanåvatnet, Mo i Rana, northern Norway. Boreas, 2008, 37, 146-156.	2.4	41
170	Statistical Learning in Palaeolimnology. Developments in Paleoenvironmental Research, 2012, , 249-327.	8.0	41
171	Late-Quaternary summer temperature changes in the northern-European tree-line region. Quaternary Research, 2008, 69, 404-412.	1.7	40
172	Recent ecological change in a remote Scottish mountain loch: An evaluation of a Cladocera-based temperature transfer-function. Palaeogeography, Palaeoclimatology, Palaeoecology, 2008, 259, 51-76.	2.3	40
173	To what extent did changes in July temperature influence Lateglacial vegetation patterns in NW Europe?. Quaternary Science Reviews, 2014, 106, 262-277.	3.0	40
174	Patterns of modern pollen and plant richness across northern Europe. Journal of Ecology, 2019, 107, 1662-1677.	4.0	40
175	NUMERICAL ZONATIONS OF FLANDRIAN POLLEN DATA. New Phytologist, 1974, 73, 351-358.	7.3	39
176	Lateâ€Quaternary palaeoclimatic research in Fennoscandia – A historical review. Boreas, 2010, 39, 655-673.	2.4	39
177	Disjunct populations of <scp>E</scp> uropean vascular plant species keep the same climatic niches. Global Ecology and Biogeography, 2015, 24, 1401-1412.	5.8	39
178	Spatial and environmental components of variation in the distribution patterns of subarctic plant species at Kevo, N Finland - a case study at the meso-scale level. Ecography, 1996, 19, 341-351.	4.5	39
179	Fifty years of Quaternary pollen analysis in Fennoscandia 1954–2004. Grana, 2005, 44, 1-22.	0.8	38
180	British Trees and Insects: A Test of the Time Hypothesis Over the Last 13,000 Years. American Naturalist, 1980, 115, 600-605.	2.1	38

#	Article	IF	CITATIONS
181	INTERGLACIAL POLLEN SPECTRA FROM SEL AYRE, SHETLAND. New Phytologist, 1979, 83, 559-575.	7.3	37
182	Recent Environmental Change and Atmospheric Contamination on Svalbard as Recorded in Lake Sediments – Modern Limnology, Vegetation, and Pollen Deposition. Journal of Paleolimnology, 2004, 31, 411-431.	1.6	37
183	The relationship between sedimentary chrysophyte scales (Chrysophyceae and Synurophyceae) and limnological characteristics in 25 Norwegian lakes. Nordic Journal of Botany, 1991, 11, 231-242.	0.5	36
184	A New Biogeographical Classification of the Scottish Uplands. II. VegetationEnvironment Relationships. Journal of Ecology, 1993, 81, 231.	4.0	36
185	â€~Diatoms and pH reconstruction' (1990) revisited. Journal of Paleolimnology, 2013, 49, 363-371.	1.6	36
186	Siberian larch forests and the ion content of thaw lakes form a geochemically functional entity. Nature Communications, 2013, 4, 2408.	12.8	36
187	Reconstructing palaeoclimatic variables from fossil pollen using boosted regression trees: comparison and synthesis with other quantitative reconstruction methods. Quaternary Science Reviews, 2014, 88, 69-81.	3.0	36
188	Patterns of variation in late-glacial pollen stratigraphy along a northwest-southeast transect through Switzerland—A numerical analysis. Quaternary Science Reviews, 1993, 12, 277-286.	3.0	35
189	The development and local stand-scale dynamics of a Picea abies forest in southeastern Norway. Holocene, 2009, 19, 1073-1082.	1.7	35
190	The Kr�kenes late-glacial palaeoenvironmental project. Journal of Paleolimnology, 1996, 15, 281-286.	1.6	34
191	THIS ARTICLE HAS BEEN RETRACTED: What caused the midâ€Holocene forest decline on the eastern Tibetâ€Qinghai Plateau?. Global Ecology and Biogeography, 2010, 19, 278-286.	5.8	33
192	MID-FLANDRIAN FOREST HISTORY OF ROUDSEA WOOD NATIONAL NATURE RESERVE, CUMBRIA. New Phytologist, 1982, 90, 339-354.	7.3	32
193	Title is missing!. Journal of Paleolimnology, 2003, 29, 123-133.	1.6	32
194	Some reflections on the refugium concept and its terminology in historical biogeography, contemporary ecology and global-change biology. Biodiversity, 2015, 16, 196-212.	1.1	32
195	Clustering and Partitioning. Developments in Paleoenvironmental Research, 2012, , 167-200.	8.0	31
196	Creating spatially continuous maps of past land cover from point estimates: A new statistical approach applied to pollen data. Ecological Complexity, 2014, 20, 127-141.	2.9	31
197	Invasion of Norway spruce diversifies the fire regime in boreal European forests. Journal of Ecology, 2011, 99, 395-403.	4.0	30
198	Are fossil assemblages in a single sediment core from a small lake representative of total deposition of mite, chironomid, and plant macrofossil remains?. Journal of Paleolimnology, 2012, 48, 669-691.	1.6	30

#	Article	IF	CITATIONS
199	Macrofossils in Raraku Lake (Easter Island) integrated with sedimentary and geochemical records: towards a palaeoecological synthesis for the last 34,000 years. Quaternary Science Reviews, 2012, 34, 113-126.	3.0	30
200	Fusing pollen-stratigraphic and dendroclimatic proxy data to reconstruct summer temperature variability during the past 7.5Âka in subarctic Fennoscandia. Journal of Paleolimnology, 2012, 48, 275-286.	1.6	30
201	Revisiting tree-migration rates: Abies alba (Mill.), a case study. Vegetation History and Archaeobotany, 2014, 23, 113-122.	2.1	30
202	Holocene sediments of SÃ g istalsee, a small lake at the present-day tree-line in the Swiss Alps. Journal of Paleolimnology, 2003, 30, 253-260.	1.6	29
203	Flora, vegetation and climate at Sokli, northeastern Fennoscandia, during the Weichselian Middle Pleniglacial. Boreas, 2009, 38, 335-348.	2.4	29
204	Developing a modern pollen–climate calibration data set for Norway. Boreas, 2010, 39, 674-688.	2.4	29
205	Early Weichselian (MIS 5d and 5c) temperatures and environmental changes in northern Fennoscandia as recorded by chironomids and macroremains at Sokli, northeast Finland. Boreas, 2010, 39, 689-704.	2.4	29
206	The relationship between vegetation composition, vegetation zones and modern pollen assemblages in Setesdal, southern Norway. Holocene, 2014, 24, 985-1001.	1.7	29
207	The fourth dimension of vegetation. Science, 2016, 354, 412-413.	12.6	29
208	A novel procedure for pollen-based quantitative paleoclimate reconstructions and its application in China. Science China Earth Sciences, 2017, 60, 2059-2066.	5.2	29
209	Overview of Numerical Methods in Palaeolimnology. Developments in Paleoenvironmental Research, 2012, , 19-92.	8.0	28
210	Diatom flickering prior to regime shift. Nature, 2013, 498, E11-E12.	27.8	28
211	A multiproxy palaeolimnological investigation of Holocene environmental change, between c. 10 700 and 7200 years BP, at Holebudalen, southern Norway. Holocene, 2008, 18, 805-817.	1.7	27
212	Quantitative vegetationâ€environment relationships in west norwegian tallâ€fern vegetation. Nordic Journal of Botany, 1990, 10, 511-533.	0.5	26
213	Analysis of Stratigraphical Data. Developments in Paleoenvironmental Research, 2012, , 355-378.	8.0	26
214	Pollenâ€based palaeoclimate reconstructions over long glacial–interglacial timescales: methodological tests based on the Holocene and <scp>MIS</scp> 5d–c deposits at Sokli, northern Finland. Journal of Quaternary Science, 2013, 28, 271-282.	2.1	26
215	A numerical analysis of the mesoscale distribution patterns of vascular plants in the subarctic Kevo Nature Reserve, northern Finland. Journal of Biogeography, 1998, 25, 123-146.	3.0	25
216	Holocene climate and environmental history of Brurskardstj \tilde{A} ,rni, a lake in the catchment of \tilde{A} vre Heimdalsvatn, south-central Norway. Hydrobiologia, 2010, 642, 13-34.	2.0	25

#	Article	IF	Citations
217	A spatio-temporal reconstruction of Holocene temperature change in southern Scandinavia. Holocene, 2012, 22, 165-177.	1.7	25
218	Long-term chemical and biological trends in Scottish streams and lochs. Water, Air, and Soil Pollution, 1995, 85, 701-706.	2.4	24
219	Modern pollen assemblages and their relationships to vegetation and climate in the Lhasa Valley, Tibetan Plateau, China. Quaternary International, 2018, 467, 210-221.	1.5	24
220	PLANT COMMUNITIES OF THE ISLAND OF ARRAN, SCOTLAND. New Phytologist, 1977, 79, 689-712.	7.3	23
221	Response to Comment on "Glacial Survival of Boreal Trees in Northern Scandinavia― Science, 2012, 338, 742-742.	12.6	23
222	Rate-of-change analysis in paleoecology revisited: A new approach. Review of Palaeobotany and Palynology, 2021, 293, 104483.	1.5	23
223	LATE-GLACIAL DEPOSITS AT BAGMERE, CHESHIRE, AND CHAT MOSS, LANCASHIRE. New Phytologist, 1965, 64, 270-281.	7.3	22
224	The ecology and conservation of the Killarney Fern Trichomanes speciosum willd. In Britain and Ireland. Biological Conservation, 1993, 66, 231-247.	4.1	22
225	Did Icelandic volcanic eruptions influence the post-glacial vegetational history of the British Isles?. Trends in Ecology and Evolution, 1994, 9, 312-314.	8.7	22
226	Al:Pe projects: Water chemistry and critical loads. Water, Air, and Soil Pollution, 1995, 85, 493-498.	2.4	22
227	Pattern and process in Norwegian upland grasslands: a functional analysis. Journal of Vegetation Science, 2002, 13, 123-134.	2.2	22
228	Lateglacial and early-Holocene climate variability reconstructed from multi-proxy records on AndÃ,ya, northern Norway. Quaternary Science Reviews, 2014, 89, 108-122.	3.0	22
229	Recurrent groups of pollen types in time. Review of Palaeobotany and Palynology, 1994, 82, 165-173.	1.5	21
230	How many freshwater diatoms are pH specialists? A response to Pither & Aarssen (2005). Ecology Letters, 2006, 9, E1-5; discussion E6-12.	6.4	21
231	Title is missing!. Water, Air, and Soil Pollution, 1999, 114, 27-51.	2.4	20
232	Holocene climate variability in the northern North Atlantic region: A review of terrestrial and marine evidence. Geophysical Monograph Series, 2005, , 289-322.	0.1	20
233	Natural and cultural heritage in mountain landscapes: towards an integrated valuation. International Journal of Biodiversity Science, Ecosystem Services & Management, 2012, 8, 313-320.	2.9	20
234	Soil mineral depletion drives early Holocene lake acidification. Geology, 2013, 41, 415-418.	4.4	20

#	Article	IF	Citations
235	A comparison of novel and traditional numerical methods for the analysis of modern pollen assemblages from major vegetation–landform types. Review of Palaeobotany and Palynology, 2014, 210, 22-36.	1.5	20
236	Compositional turnover and variation in Eemian pollen sequences in Europe. Vegetation History and Archaeobotany, 2020, 29, 101-109.	2.1	20
237	Quantitative studies on saxicolous bryophyte â€" environment relationships in western Norway. Journal of Bryology, 1993, 17, 579-611.	1.2	19
238	Title is missing!. Journal of Paleolimnology, 2001, 25, 375-392.	1.6	19
239	Inconsistent results should not be overlooked: A reply to Brooks et al. (2012). Holocene, 2012, 22, 1501-1508.	1.7	17
240	Chemical variations in <i>Quercus</i> pollen as a tool for taxonomic identification: Implications for longâ€term ecological and biogeographical research. Journal of Biogeography, 2020, 47, 1298-1309.	3.0	17
241	Testing the effect of the Himalayan mountains as a physical barrier to gene flow in Hippophae tibetana Schlect. (Elaeagnaceae). PLoS ONE, 2017, 12, e0172948.	2.5	17
242	A NUMERICAL ANALYSIS OF THE PAST AND PRESENT FLORA OF THE BRITISH ISLES. New Phytologist, 1973, 72, 877-902.	7.3	16
243	The effect of calibration data set selection on quantitative palaeoclimatic reconstructions. Holocene, 2013, 23, 1650-1654.	1.7	16
244	Reconciling pollen-stratigraphical and tree-ring evidence for high- and low-frequency temperature variability in the past millennium. Quaternary Science Reviews, 2010, 29, 3905-3918.	3.0	15
245	QSR Correspondence "ls spatial autocorrelation introducing biases in the apparent accuracy of palaeoclimatic reconstructions?― Quaternary Science Reviews, 2011, 30, 3210-3213.	3.0	15
246	Reflections on the Use of Ecological Attributes and Traits in Quaternary Botany. Frontiers in Ecology and Evolution, 2020, 8, .	2.2	15
247	Studies on the bryophyte flora and vegetation of the Isle of Skye. I. Flora. Journal of Bryology, 1974, 8, 197-254.	1.2	14
248	A multi-proxy palaeoecological study of Alanen LaanijÃÞ, a boreal-forest lake in Swedish Lapland. Boreas, 2005, 34, 192-206.	2.4	14
249	Testing intra-site transfer functions: an example using chironomids and water depth. Journal of Paleolimnology, 2012, 48, 545-558.	1.6	14
250	The Fagus sylvatica forests in the Larvik region, south-eastern Norway: their origin and history. Vegetation History and Archaeobotany, 2013, 22, 215-229.	2.1	14
251	Are diversity trends in western Scandinavia influenced by postâ€glacial dispersal limitation?. Journal of Vegetation Science, 2018, 29, 360-370.	2.2	14
252	Merging chironomid training sets: implications for palaeoclimate reconstructions. Quaternary Science Reviews, 2011, 30, 2793-2804.	3.0	13

#	Article	IF	CITATIONS
253	Temperature reconstructions for the last 1.74-Ma on the eastern Tibetan Plateau based on a novel pollen-based quantitative method. Global and Planetary Change, 2021, 199, 103433.	3.5	13
254	Temporally changing drivers for late-Holocene vegetation changes on the northern Tibetan Plateau. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 353-355, 10-20.	2.3	12
255	The identification of wingless Betula fruits in Weichselian sediments in the Gross Todtshorn borehole (Lower Saxony, Germany) – the occurrence of Betula humilis Schrank Vegetation History and Archaeobotany, 2001, 10, 107-115.	2.1	11
256	Maximum likelihood environmental calibration and the compute program WACALIB a correction. Journal of Paleolimnology, 2001, 25, 111-115.	1.6	11
257	On the presence of late-glacial trees in western Norway and the Scandes: a further comment. Journal of Biogeography, 2006, 33, 376-377.	3.0	11
258	Long-term vegetation stability in northern Europe as assessed by changes in species co-occurrences. Plant Ecology and Diversity, 2013, 6, 289-302.	2.4	11
259	Detecting patterns of change in a long pollen-stratigraphical sequence from Funza, Colombia – A comparison of new and traditional numerical approaches. Review of Palaeobotany and Palynology, 2016, 234, 94-109.	1.5	11
260	"Think horizontally, act vertically― the centenary (1916–2016) of pollen analysis and the legacy of Lennart von Post. Vegetation History and Archaeobotany, 2018, 27, 267-269.	2.1	10
261	distantia: an openâ€source toolset to quantify dissimilarity between multivariate ecological timeâ€series. Ecography, 2020, 43, 660-667.	4.5	10
262	Oribatid mite assemblages across the tree-line in western Norway and their representation in lake sediments. Journal of Paleolimnology, 2010, 44, 361-374.	1.6	9
263	Alpine vegetation and species-richness patterns along two altitudinal gradients in the Gyama Valley, south-central Tibet, China. Plant Ecology and Diversity, 2010, 3, 235-247.	2.4	9
264	Alpine biodiversity and refugia in a changing climate. Biodiversity, 2015, 16, 193-195.	1.1	9
265	Rapid climatic changes during the Greenland stadial 1 (Younger Dryas) to early Holocene transition on the Norwegian Barents Sea coast. Boreas, 2002, 31, 215-225.	2.4	8
266	Current continental palaeoclimatic research in the Nordic region (100 years since Gunnar Andersson) Tj ETQq0 0	0 <u>rg</u> BT /C	verlock 10 Tf
267	The March Towards the Quantitative Analysis of Palaeolimnological Data. Developments in Paleoenvironmental Research, 2012, , 3-17.	8.0	7
268	Introduction and Overview of Part II. Developments in Paleoenvironmental Research, 2012, , 101-121.	8.0	7
269	Kohonen Artificial Neural Networks and the IndVal Index as Supplementary Tools for the Quantitative Analysis of Palaeoecological Data. Geochronometria, 2015, 42, .	0.8	6
270	Stability of alpine vegetation over 50 years in central Norway. Folia Geobotanica, 2015, 50, 39-48.	0.9	6

#	Article	IF	CITATIONS
271	Pattern and process in Norwegian upland grasslands: a functional analysis. Journal of Vegetation Science, 2002, 13, 123.	2.2	6
272	A multi-proxy palaeoecological study of Alanen Laanijävi, a boreal-forest lake in Swedish Lapland. Boreas, 2005, 34, 192-206.	2.4	5
273	Conclusions and Future Challenges. Developments in Paleoenvironmental Research, 2012, , 643-673.	8.0	5
274	A diverse scientific life. Journal of Paleolimnology, 2014, 51, 113-137.	1.6	5
275	Angiosperms versus gymnosperms in the Cretaceous. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 30879-30881.	7.1	5
276	A Dote on the habitat of <i>Scorpidium turgescens </i> (T. Jens.) Loeske in Scotland. Transactions of the British Bryological Society, 1970, 6, 129-132.	0.8	4
277	Paleoecology. , 2019, , 494-504.		4
278	Svend Th. Andersen (1926–2009). Review of Palaeobotany and Palynology, 2009, 157, 189-191.	1.5	3
279	Aquatic ecotonesâ€"new insights from Arctic Canada. Journal of Phycology, 2014, 50, 607-609.	2.3	3
280	How foreign is the past?. Nature, 2016, 538, E1-E2.	27.8	3
280	How foreign is the past?. Nature, 2016, 538, E1-E2. Data-Sets. Developments in Paleoenvironmental Research, 2012, , 93-97.	27.8	3
281	Data-Sets. Developments in Paleoenvironmental Research, 2012, , 93-97. Rick Battarbee and his many contributions to palaeolimnology. Journal of Paleolimnology, 2013, 49,	8.0	2
281	Data-Sets. Developments in Paleoenvironmental Research, 2012, , 93-97. Rick Battarbee and his many contributions to palaeolimnology. Journal of Paleolimnology, 2013, 49, 313-332. Microrefugia and Shifts of Hippophae tibetana (Elaeagnaceae) on the North Side of Mt. Qomolangma	8.0 1.6	2
281 282 283	Data-Sets. Developments in Paleoenvironmental Research, 2012, , 93-97. Rick Battarbee and his many contributions to palaeolimnology. Journal of Paleolimnology, 2013, 49, 313-332. Microrefugia and Shifts of Hippophae tibetana (Elaeagnaceae) on the North Side of Mt. Qomolangma (Mt. Everest) during the Last 25000 Years. PLoS ONE, 2014, 9, e97601. <i> <i>Lophozia perssonii ⟨ /i > Buch & amp; S. Arnellâ€" new to Britain. Transactions of the British Bryological</i></i>	8.0 1.6 2.5	2 2
281 282 283 284	Data-Sets. Developments in Paleoenvironmental Research, 2012, , 93-97. Rick Battarbee and his many contributions to palaeolimnology. Journal of Paleolimnology, 2013, 49, 313-332. Microrefugia and Shifts of Hippophae tibetana (Elaeagnaceae) on the North Side of Mt. Qomolangma (Mt. Everest) during the Last 25000 Years. PLoS ONE, 2014, 9, e97601. <ir> ⟨i⟩Lophozia perssonii⟨li⟩Buch & Dritain. Transactions of the British Bryological Society, 1968, 5, 439-442. </ir>	8.0 1.6 2.5	2 2 2
281 282 283 284	Data-Sets. Developments in Paleoenvironmental Research, 2012, , 93-97. Rick Battarbee and his many contributions to palaeolimnology. Journal of Paleolimnology, 2013, 49, 313-332. Microrefugia and Shifts of Hippophae tibetana (Elaeagnaceae) on the North Side of Mt. Qomolangma (Mt. Everest) during the Last 25000 Years. PLoS ONE, 2014, 9, e97601. ⟨i>Lophozia perssonii⟨/i>Buch & S. Arnellâ€"new to Britain. Transactions of the British Bryological Society, 1968, 5, 439-442. Frank Oldfield and his contributions to environmental change research. Holocene, 2008, 18, 3-17.	8.0 1.6 2.5 0.8	2 2 2 1

#	Article	IF	CITATIONS
289	Frode Berge (1938-1997). Journal of Paleolimnology, 1999, 21, 259-261.	1.6	0
290	Introduction and Overview of Part IV. Developments in Paleoenvironmental Research, 2012, , 551-555.	8.0	0
291	Holocene climate and environmental history of Brurskardstj $\tilde{A}_{_{i}}$ rni, a lake in the catchment of $\tilde{A}^{_{i}}$ vre Heimdalsvatn, south-central Norway. , 2010, , 13-34.		0