Matthew B Myers

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5214666/publications.pdf

Version: 2024-02-01

186265 3,063 88 28 citations h-index papers

g-index 91 91 91 4069 docs citations times ranked citing authors all docs

161849

54

#	Article	IF	CITATIONS
1	First Example of N-Heterocyclic Carbenes as Catalysts for Living Polymerization:  Organocatalytic Ring-Opening Polymerization of Cyclic Esters. Journal of the American Chemical Society, 2002, 124, 914-915.	13.7	443
2	Magnetite Fe3O4Nanocrystals: Spectroscopic Observation of Aqueous Oxidation Kineticsâ€. Journal of Physical Chemistry B, 2003, 107, 7501-7506.	2.6	344
3	Molecular Wires from Contorted Aromatic Compounds. Angewandte Chemie - International Edition, 2005, 44, 7390-7394.	13.8	293
4	Phosphines: Nucleophilic organic catalysts for the controlled ring-opening polymerization of lactides. Journal of Polymer Science Part A, 2002, 40, 844-851.	2.3	141
5	Chemoresponsive monolayer transistors. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 11452-11456.	7.1	141
6	Recent progress in sensing nitrate, nitrite, phosphate, and ammonium in aquatic environment. Chemosphere, 2020, 259, 127492.	8.2	98
7	Photoresponsive nanoscale columnar transistors. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 691-696.	7.1	94
8	Forming Aromatic Hemispheres on Transitionâ€Metal Surfaces. Angewandte Chemie - International Edition, 2007, 46, 7891-7895.	13.8	76
9	Mercury(II) selective sensors based on AlGaN/GaN transistors. Analytica Chimica Acta, 2016, 943, 1-7.	5.4	71
10	Formation of Catalytic Metal-Molecule Contacts. Science, 2005, 309, 591-594.	12.6	69
10	Formation of Catalytic Metal-Molecule Contacts. Science, 2005, 309, 591-594. Tracers – Past, present and future applications in CO2 geosequestration. Applied Geochemistry, 2013, 30, 125-135.	3.0	69
	Tracers – Past, present and future applications in CO2 geosequestration. Applied Geochemistry, 2013,		
11	Tracers – Past, present and future applications in CO2 geosequestration. Applied Geochemistry, 2013, 30, 125-135. An experimental study for carbonate reservoirs on the impact of CO2-EOR on petrophysics and oil	3.0	62
11 12	Tracers – Past, present and future applications in CO2 geosequestration. Applied Geochemistry, 2013, 30, 125-135. An experimental study for carbonate reservoirs on the impact of CO2-EOR on petrophysics and oil recovery. Fuel, 2019, 235, 1019-1038.	3.0	62 50
11 12 13	Tracers – Past, present and future applications in CO2 geosequestration. Applied Geochemistry, 2013, 30, 125-135. An experimental study for carbonate reservoirs on the impact of CO2-EOR on petrophysics and oil recovery. Fuel, 2019, 235, 1019-1038. Mid-Infrared Sensing of Organic Pollutants in Aqueous Environments. Sensors, 2009, 9, 6232-6253. Application of nuclear magnetic resonance technology to carbon capture, utilization and storage: A	3.0 6.4 3.8	62 50 49
11 12 13	Tracers – Past, present and future applications in CO2 geosequestration. Applied Geochemistry, 2013, 30, 125-135. An experimental study for carbonate reservoirs on the impact of CO2-EOR on petrophysics and oil recovery. Fuel, 2019, 235, 1019-1038. Mid-Infrared Sensing of Organic Pollutants in Aqueous Environments. Sensors, 2009, 9, 6232-6253. Application of nuclear magnetic resonance technology to carbon capture, utilization and storage: A review. Journal of Rock Mechanics and Geotechnical Engineering, 2019, 11, 892-908. Functionalized graphene as an aqueous phase chemiresistor sensing material. Sensors and Actuators	3.0 6.4 3.8 8.1	62504946
11 12 13 14	Tracers – Past, present and future applications in CO2 geosequestration. Applied Geochemistry, 2013, 30, 125-135. An experimental study for carbonate reservoirs on the impact of CO2-EOR on petrophysics and oil recovery. Fuel, 2019, 235, 1019-1038. Mid-Infrared Sensing of Organic Pollutants in Aqueous Environments. Sensors, 2009, 9, 6232-6253. Application of nuclear magnetic resonance technology to carbon capture, utilization and storage: A review. Journal of Rock Mechanics and Geotechnical Engineering, 2019, 11, 892-908. Functionalized graphene as an aqueous phase chemiresistor sensing material. Sensors and Actuators B: Chemical, 2011, 155, 154-158. Nitrate ion detection using AlGaN/GaN heterostructure-based devices without a reference electrode.	3.0 6.4 3.8 8.1	6250494645

#	Article	IF	CITATIONS
19	Experimental Evaluations of Polymeric Solubility and Thickeners for Supercritical CO ₂ at High Temperatures for Enhanced Oil Recovery. Energy & En	5.1	36
20	Synchrotron-based XPS studies of AlGaN and GaN surface chemistry and its relationship to ion sensor behaviour. Applied Surface Science, 2014, 314, 850-857.	6.1	35
21	Modifying the response of a polymer-based quartz crystal microbalance hydrocarbon sensor with functionalized carbon nanotubes. Talanta, 2011, 85, 1648-1657.	5.5	34
22	Direct quantification of aromatic hydrocarbons in geochemical fluids with a mid-infrared attenuated total reflection sensor. Organic Geochemistry, 2013, 55, 63-71.	1.8	33
23	Migration and storage characteristics of supercritical CO2 in anisotropic sandstones with clay interlayers based on X-CT experiments. Journal of Hydrology, 2020, 580, 124239.	5.4	33
24	Insight investigation of miscible SCCO2 Water Alternating Gas (WAG) injection performance in heterogeneous sandstone reservoirs. Journal of CO2 Utilization, 2018, 28, 255-263.	6.8	32
25	Mid-Infrared Spectroscopic Method for the Identification and Quantification of Dissolved Oil Components in Marine Environments. Analytical Chemistry, 2015, 87, 12306-12312.	6.5	30
26	Performance of graphene, carbon nanotube, and gold nanoparticle chemiresistor sensors for the detection of petroleum hydrocarbons in water. Journal of Nanoparticle Research, 2014, 16, 1.	1.9	29
27	Insights into immiscible supercritical CO2 EOR: An XCT scanner assisted flow behaviour in layered sandstone porous media. Journal of CO2 Utilization, 2019, 32, 187-195.	6.8	29
28	Using Plasticizers to Control the Hydrocarbon Selectivity of a Poly(Methyl Methacrylate)-Coated Quartz Crystal Microbalance Sensor. Analytical Chemistry, 2012, 84, 8564-8570.	6.5	27
29	Next generation amino acid technology for CO ₂ capture. Journal of Materials Chemistry A, 2021, 9, 1692-1704.	10.3	27
30	Portable Mid-Infrared Sensor System for Monitoring CO ₂ and CH ₄ at High Pressure in Geosequestration Scenarios. ACS Sensors, 2016, 1, 413-419.	7.8	24
31	Direct air capture (DAC) of CO ₂ using polyethylenimine (PEI) "snow†a scalable strategy. Chemical Communications, 2020, 56, 7151-7154.	4.1	23
32	Influence of Permeability Heterogeneity on Miscible CO2 Flooding Efficiency in Sandstone Reservoirs: An Experimental Investigation. Transport in Porous Media, 2018, 125, 341-356.	2.6	21
33	Flow behavior characteristics and residual trapping of supercritical carbon dioxide in tight glutenite by MRI experiments. Journal of Natural Gas Science and Engineering, 2020, 83, 103540.	4.4	21
34	A controlled CO2 release experiment in a fault zone at the In-Situ Laboratory in Western Australia. International Journal of Greenhouse Gas Control, 2020, 99, 103100.	4.6	19
35	Poly(2-Hydroxyethyl Methacrylate) Sponges Doped with Ag Nanoparticles as Antibacterial Agents. ACS Applied Nano Materials, 2020, 3, 1630-1639.	5.0	19
36	Pore size dynamics in interpenetrated metal organic frameworks for selective sensing of aromatic compounds. Analytica Chimica Acta, 2014, 819, 78-81.	5.4	18

#	Article	IF	CITATIONS
37	A mid-infrared sensor for the determination of perfluorocarbon-based compounds in aquatic systems for geosequestration purposes. Talanta, 2014, 130, 527-535.	5.5	18
38	Method for the determination of residual carbon dioxide saturation using reactive ester tracers. Applied Geochemistry, 2012, 27, 2148-2156.	3.0	17
39	Description of ionophore-doped membranes with a blocked interface. Sensors and Actuators B: Chemical, 2017, 250, 499-508.	7.8	16
40	Role of GaN cap layer for reference electrode free AlGaN/GaN-based pH sensors. Sensors and Actuators B: Chemical, 2019, 287, 250-257.	7.8	16
41	The impact of water and hydrocarbon concentration on the sensitivity of a polymer-based quartz crystal microbalance sensor for organic compounds. Analytica Chimica Acta, 2011, 703, 70-79.	5.4	14
42	The Effect of Pressure and Temperature on Mid-Infrared Sensing of Dissolved Hydrocarbons in Water. Analytical Chemistry, 2017, 89, 13391-13397.	6.5	14
43	Effects of oligomers dissolved in CO2 or associated gas on IFT and miscibility pressure with a gas-light crude oil system. Journal of Petroleum Science and Engineering, 2019, 181, 106210.	4.2	13
44	Field measurement of residual carbon dioxide saturation using reactive ester tracers. Chemical Geology, 2015, 399, 20-29.	3.3	12
45	Development of a plasticizer-poly(methyl methacrylate) membrane for sensing petroleum hydrocarbons in water. Sensors and Actuators B: Chemical, 2014, 193, 70-77.	7.8	11
46	Polyethylenimine "Snow― An Emerging Material for Efficient Carbon Removal. ACS Applied Materials & Samp; Interfaces, 2019, 11, 26770-26780.	8.0	11
47	An Experimental Investigation of Immiscible-CO2-Flooding Efficiency in Sandstone Reservoirs: Influence of Permeability Heterogeneity. SPE Reservoir Evaluation and Engineering, 2019, 22, 990-997.	1.8	11
48	Mid-infrared sensor for hydrocarbon monitoring: the influence of salinity, matrix and aging on hydrocarbon–polymer partitioning. Analytical Methods, 2018, 10, 1516-1522.	2.7	9
49	An experimental investigation into quantifying CO2 leakage in aqueous environments using chemical tracers. Chemical Geology, 2019, 511, 91-99.	3.3	9
50	Modifying the Wettability of Sandstones Using Nonfluorinated Silylation: To Minimize the Water Blockage Effect. Energy &	5.1	9
51	Chemical-assisted minimum miscibility pressure reduction between oil and methane. Journal of Petroleum Science and Engineering, 2021, 196, 108094.	4.2	9
52	Rock/Fluid/Polymer Interaction Mechanisms: Implications for Water Shut-off Treatment. Energy & Energy & Fuels, 2021, 35, 12809-12827.	5.1	9
53	Calixarene–polymer hybrid film for selective detection of hydrocarbons in water. New Journal of Chemistry, 2017, 41, 6195-6202.	2.8	8
54	Complex Brillouin Optical Time-Domain Analysis. Journal of Lightwave Technology, 2018, 36, 1840-1850.	4.6	8

#	Article	IF	CITATIONS
55	Mechanistic Aspects of Polymeric Relative Permeability Modifier Adsorption onto Carbonate Rocks. Energy & Energ	5.1	8
56	Effects of CO2-Saturated Brine on the Injectivity and Integrity of Chalk Reservoirs. Transport in Porous Media, 2020, 135, 735-751.	2.6	8
57	New Approach to Alternating Thickened–Unthickened Gas Flooding for Enhanced Oil Recovery. Industrial & Engineering Chemistry Research, 2018, 57, 14637-14647.	3.7	7
58	CSIRO In-Situ Lab: A multi-pronged approach to surface gas and groundwater monitoring at geological CO2 storage sites. Chemical Geology, 2020, 545, 119642.	3.3	7
59	Changing Sandstone Rock Wettability with Supercritical CO ₂ -Based Silylation. Energy & Local Supercritical CO ₂ -Based Silylation. Energy & Local Supercritical CO _{-Based Silylation. Energy & Local Supercritical CO_{-Based Silylation. Energy & Local Supercritic}}</sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub>	5.1	7
60	Experimental and numerical investigation of supercritical CO2 migration in sandstone with multiple clay interlayers. International Journal of Greenhouse Gas Control, 2021, 104, 103194.	4.6	7
61	Amine-Infused Hydrogels with Nonaqueous Solvents: Facile Platforms to Control CO ₂ Capture Performance. Industrial & Engineering Chemistry Research, 2021, 60, 14758-14767.	3.7	7
62	Effects of bedding direction on brine imbibition in Lower Shaximiao tight sandstone: An NMR analysis. Journal of Petroleum Science and Engineering, 2022, 210, 110006.	4.2	7
63	XPS/NEXAFS spectroscopic and conductance studies of glycine on AlGaN/GaN transistor devices. Applied Surface Science, 2018, 435, 23-30.	6.1	6
64	Further Insights into the Performance of Silylated Polyacrylamide-Based Relative Permeability Modifiers in Carbonate Reservoirs and Influencing Factors. ACS Omega, 2021, 6, 13671-13683.	3.5	6
65	Wettability alteration using benzoxazine resin: A remedy for water blockage in sandstone gas reservoirs. Fuel, 2021, 291, 120189.	6.4	6
66	Carbonated waterflooding in carbonate reservoirs: Experimental evaluation and geochemical interpretation. Journal of Molecular Liquids, 2020, 308, 113055.	4.9	5
67	The effects of porosity and permeability changes on simulated supercritical CO ₂ migration front in tight glutenite under different effective confining pressures from 1.5 MPa to 21.5 MPa., 2021, 11, 19-36.		5
68	The impact of partition coefficient data on the interpretation of chemical tracer behaviour in carbon geosequestration projects. Chemical Geology, 2017, 465, 52-63.	3.3	4
69	Block Copolymer-Coated ATR-FTIR Spectroscopic Sensors for Monitoring Hydrocarbons in Aquatic Environments at High Temperature and Pressure. ACS Applied Polymer Materials, 2019, 1, 2149-2156.	4.4	4
70	Charging mechanism of AlGaN/GaN open-gate pH sensor and electrolyte interface. , 2014, , .		3
71	Effect of Functional Groups on Chemical-Assisted MMP Reduction of a Methane-Oil System. Energy & Fuels, 2021, 35, 14519-14526.	5.1	3
72	Dynamic Pressure/Temperature Behaviour of GaN-Based Chemical Sensors. IEEE Sensors Journal, 2021, 21, 18877-18886.	4.7	3

#	Article	IF	Citations
73	Migration of carbon dioxide in sandstone under various pressure/temperature conditions: From experiment to simulation., 2022, 12, 233-248.		3
74	Improvements to ATR-FTIR based chemical sensors for the detection of organic contaminants dissolved in water. , 2009, , .		2
75	Poly(2-hydroxyethyl methacrylate) Hydrogels Doped with Gold Nanoparticles for Surface-Enhanced Raman Spectroscopy. ACS Applied Nano Materials, 2021, 4, 5577-5589.	5.0	2
76	Baseline characterisation and monitoring protocols for development of shale and tight gas resources, northern Perth Basin. APPEA Journal, 2017, 57, 64.	0.2	2
77	Impacts of Limestone Vertical Permeability Heterogeneity on Fluidâ \in "Rock Interaction During CCS. Transport in Porous Media, 0, , 1.	2.6	2
78	Poly(2-hydroxyethyl methacrylate) hydrogels doped with copper nanoparticles. Journal of Nanoparticle Research, 2021, 23, 1.	1.9	1
79	Surface Monitoring Strategies at CO2 Storage Sites. Environmental Science and Engineering, 2019, , 138-143.	0.2	1
80	X-Ray Computed Tomography Assisted Investigation of Flow Behaviour of Miscible CO2 to Enhance Oil Recovery in Layered Sandstone Porous Media., 2022,,.		1
81	Optimisation studies for AlGaN/GaN-based nitrate sensors. , 2012, , .		О
82	An investigation into signal stability during measurement of AlGaN/GaN transistor-based chemical sensors. , $2014, \ldots$		0
83	Chemical Tracers for the Offshore Determination of Residual Oil Saturation. , 2014, , .		0
84	Temperature sensitivity of reactive ester tracers for measuring CO2 residual trapping capacity. Chemical Geology, 2015, 399, 30-35.	3.3	0
85	Calixarene-Poly(methyl methacrylate) composites for ATR-IR sensing of water dissolved aromatic compounds. , 2016, , .		0
86	Complex domain Brillouin frequency estimation for distributed fiber sensing. , 2017, , .		0
87	Using IR-based sensors to monitor fugitive greenhouse gas emissions in the Australian context. , 2019, ,		0
88	Chem/Bio Sensors for Marine Applications. , 2022, , .		O