Jun Wei Pek

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/521408/publications.pdf

Version: 2024-02-01

687363 713466 26 695 13 21 h-index citations g-index papers 26 26 26 868 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Tudor domain proteins in development. Development (Cambridge), 2012, 139, 2255-2266.	2.5	119
2	Drosophila Maelstrom Ensures Proper Germline Stem Cell Lineage Differentiation by Repressing microRNA-7. Developmental Cell, 2009, 17, 417-424.	7.0	98
3	DEAD-box RNA helicase Belle/DDX3 and the RNA interference pathway promote mitotic chromosome segregation. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 12007-12012.	7.1	83
4	A Role for Vasa in Regulating Mitotic Chromosome Condensation in Drosophila. Current Biology, 2011, 21, 39-44.	3.9	65
5	Stable intronic sequence RNAs have possible regulatory roles in <i>Drosophila melanogaster</i> Journal of Cell Biology, 2015, 211, 243-251.	5.2	51
6	Maternally Inherited Stable Intronic Sequence RNA Triggers a Self-Reinforcing Feedback Loop during Development. Current Biology, 2017, 27, 1062-1067.	3.9	43
7	piRNA pathway and the potential processing site, the nuage, in the <i>Drosophila</i> germline. Development Growth and Differentiation, 2012, 54, 66-77.	1.5	38
8	Stable intronic sequence RNAs (sisRNAs): a new layer of gene regulation. Cellular and Molecular Life Sciences, 2016, 73, 3507-3519.	5.4	32
9	Stable Intronic Sequence RNAs (sisRNAs): An Expanding Universe. Trends in Biochemical Sciences, 2019, 44, 258-272.	7.5	32
10	DIP1 modulates stem cell homeostasis in Drosophila through regulation of sisR-1. Nature Communications, 2017, 8, 759.	12.8	20
11	Generation of Drosophila sisRNAs by Independent Transcription from Cognate Introns. IScience, 2018, 4, 68-75.	4.1	18
12	Non-coding RNAs enter mitosis: functions, conservation and implications. Cell Division, 2011, 6, 6.	2.4	17
13	Polo-mediated phosphorylation of Maelstrom regulates oocyte determination during oogenesis in <i>Drosophila</i> . Development (Cambridge), 2012, 139, 4505-4513.	2.5	16
14	Regulatory <scp>RNAs</scp> discovered in unexpected places. Wiley Interdisciplinary Reviews RNA, 2015, 6, 671-686.	6.4	14
15	Stable Intronic Sequence RNAs Engage in Feedback Loops. Trends in Genetics, 2018, 34, 330-332.	6.7	13
16	A sisRNA/miRNA Axis Prevents Loss of Germline Stem Cells during Starvation in Drosophila. Stem Cell Reports, 2018, 11, 4-12.	4.8	11
17	Germline Stem Cell Heterogeneity Supports Homeostasis in Drosophila. Stem Cell Reports, 2018, 11, 13-21.	4.8	7
18	Maternally inherited intron coordinates primordial germ cell homeostasis during Drosophila embryogenesis. Cell Death and Differentiation, 2021, 28, 1208-1221.	11.2	5

#	Article	IF	CITATIONS
19	Circular sisRNA identification and characterisation. Methods, 2021, 196, 138-146.	3.8	5
20	Maternal starvation primes progeny response to nutritional stress. PLoS Genetics, 2021, 17, e1009932.	3.5	5
21	SON protects nascent transcripts from unproductive degradation by counteracting DIP1. PLoS Genetics, 2019, 15, e1008498.	3.5	3
22	Stable intronic sequence RNAs have possible regulatory roles in <i>Drosophila melanogaster</i> Journal of Experimental Medicine, 2015, 212, 212120IA99.	8.5	0
23	SON protects nascent transcripts from unproductive degradation by counteracting DIP1., 2019, 15, e1008498.		0
24	SON protects nascent transcripts from unproductive degradation by counteracting DIP1., 2019, 15, e1008498.		0
25	SON protects nascent transcripts from unproductive degradation by counteracting DIP1., 2019, 15, e1008498.		0
26	SON protects nascent transcripts from unproductive degradation by counteracting DIP1., 2019, 15, e1008498.		0