
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5213939/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Optimal policies for free recall Psychological Review, 2023, 130, 1104-1124.	2.7	1
2	BrainIAK: The Brain Imaging Analysis Kit. , 2022, 2021, .		18
3	Increasing stimulus similarity drives nonmonotonic representational change in hippocampus. ELife, 2022, 11, .	2.8	22
4	High-Order Areas and Auditory Cortex Both Represent the High-Level Event Structure of Music. Journal of Cognitive Neuroscience, 2022, 34, 699-714.	1.1	12
5	A neural network model of when to retrieve and encode episodic memories. ELife, 2022, 11, .	2.8	18
6	Shared computational principles for language processing in humans and deep language models. Nature Neuroscience, 2022, 25, 369-380.	7.1	116
7	Schema representations in distinct brain networks support narrative memory during encoding and retrieval. ELife, 2022, 11, .	2.8	18
8	RT-Cloud: A cloud-based software framework to simplify and standardize real-time fMRI. NeuroImage, 2022, 257, 119295.	2.1	2
9	Real-time neurofeedback to alter interpretations of a naturalistic narrative. Neurolmage Reports, 2022, 2, 100111.	0.5	2
10	Rational use of episodic and working memory: A normative account of prospective memory. Neuropsychologia, 2021, 158, 107657.	0.7	3
11	Context-dependent memory effects in two immersive virtual reality environments: On Mars and underwater. Psychonomic Bulletin and Review, 2021, 28, 574-582.	1.4	21
12	Behavioral, Physiological, and Neural Signatures of Surprise during Naturalistic Sports Viewing. Neuron, 2021, 109, 377-390.e7.	3.8	92
13	Cloud-Based Functional Magnetic Resonance Imaging Neurofeedback to Reduce the Negative Attentional Bias in Depression: A Proof-of-Concept Study. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2021, 6, 490-497.	1.1	9
14	Multiple memories can be simultaneously reactivated during sleep as effectively as a single memory. Communications Biology, 2021, 4, 25.	2.0	29
15	Learning to perform role-filler binding with schematic knowledge. PeerJ, 2021, 9, e11046.	0.9	1
16	Neural alignment predicts learning outcomes in students taking an introduction to computer science course. Nature Communications, 2021, 12, 1922.	5.8	33
17	ls Activity Silent Working Memory Simply Episodic Memory?. Trends in Cognitive Sciences, 2021, 25, 284-293.	4.0	50
18	Relating the Past with the Present: Information Integration and Segregation during Ongoing Narrative Processing. Journal of Cognitive Neuroscience, 2021, 33, 1106-1128.	1.1	32

#	Article	IF	CITATIONS
19	The "Narratives―fMRI dataset for evaluating models of naturalistic language comprehension. Scientific Data, 2021, 8, 250.	2.4	50
20	Moment-by-moment tracking of naturalistic learning and its underlying hippocampo-cortical interactions. Nature Communications, 2021, 12, 5394.	5.8	20
21	Studying episodic memory using real-time fMRI. , 2021, , 107-130.		2
22	Brain kernel: A new spatial covariance function for fMRI data. NeuroImage, 2021, 245, 118580.	2.1	1
23	Relating Visual Production and Recognition of Objects in Human Visual Cortex. Journal of Neuroscience, 2020, 40, 1710-1721.	1.7	18
24	Leveraging shared connectivity to aggregate heterogeneous datasets into a common response space. NeuroImage, 2020, 217, 116865.	2.1	26
25	Reward prediction errors create event boundaries in memory. Cognition, 2020, 203, 104269.	1.1	55
26	Temporal integration of narrative information in a hippocampal amnesic patient. NeuroImage, 2020, 213, 116658.	2.1	21
27	BrainIAK tutorials: User-friendly learning materials for advanced fMRI analysis. PLoS Computational Biology, 2020, 16, e1007549.	1.5	44
28	Structured Event Memory: A neuro-symbolic model of event cognition Psychological Review, 2020, 127, 327-361.	2.7	98
29	Synthesizing images from deep neural networks to map the hierarchy of feature complexity in human visual cortex. Journal of Vision, 2020, 20, 556.	0.1	0
30	BrainIAK tutorials: User-friendly learning materials for advanced fMRI analysis. , 2020, 16, e1007549.		0
31	BrainIAK tutorials: User-friendly learning materials for advanced fMRI analysis. , 2020, 16, e1007549.		Ο
32	BrainIAK tutorials: User-friendly learning materials for advanced fMRI analysis. , 2020, 16, e1007549.		0
33	BrainIAK tutorials: User-friendly learning materials for advanced fMRI analysis. , 2020, 16, e1007549.		Ο
34	Neural Overlap in Item Representations Across Episodes Impairs Context Memory. Cerebral Cortex, 2019, 29, 2682-2693.	1.6	11
35	Attentional bias in depression: understanding mechanisms to improve training and treatment. Current Opinion in Psychology, 2019, 29, 266-273.	2.5	62
36	Nonmonotonic Plasticity: How Memory Retrieval Drives Learning. Trends in Cognitive Sciences, 2019, 23, 726-742.	4.0	97

#	Article	IF	CITATIONS
37	Refresh my memory: Episodic memory reinstatements intrude on working memory maintenance. Cognitive, Affective and Behavioral Neuroscience, 2019, 19, 338-354.	1.0	23
38	Neurofeedback helps to reveal a relationship between context reinstatement and memory retrieval. NeuroImage, 2019, 200, 292-301.	2.1	21
39	Targeted Memory Reactivation during Sleep Elicits Neural Signals Related to Learning Content. Journal of Neuroscience, 2019, 39, 6728-6736.	1.7	48
40	Synthesizing images with deep neural networks to manipulate representational similarity and induce representational change. Journal of Vision, 2019, 19, 202d.	0.1	0
41	Using Closed-Loop Real-Time fMRI Neurofeedback to Induce Neural Plasticity and Influence Perceptual Similarity. Journal of Vision, 2019, 19, 186c.	0.1	Ο
42	Mapping between fMRI responses to movies and their natural language annotations. NeuroImage, 2018, 180, 223-231.	2.1	61
43	Human hippocampal replay during rest prioritizes weakly learned information and predicts memory performance. Nature Communications, 2018, 9, 3920.	5.8	167
44	Representation of Real-World Event Schemas during Narrative Perception. Journal of Neuroscience, 2018, 38, 9689-9699.	1.7	208
45	Sleep Spindle Refractoriness Segregates Periods of Memory Reactivation. Current Biology, 2018, 28, 1736-1743.e4.	1.8	135
46	Forgetting from lapses of sustained attention. Psychonomic Bulletin and Review, 2018, 25, 605-611.	1.4	67
47	Competitive learning modulates memory consolidation during sleep. Neurobiology of Learning and Memory, 2018, 155, 216-230.	1.0	23
48	Reductions in Retrieval Competition Predict the Benefit of Repeated Testing. Scientific Reports, 2018, 8, 11714.	1.6	7
49	Dissociable effects of surprising rewards on learning and memory Journal of Experimental Psychology: Learning Memory and Cognition, 2018, 44, 1430-1443.	0.7	77
50	Offline replay supports planning in human reinforcement learning. ELife, 2018, 7, .	2.8	91
51	Inducing Neural Plasticity and Perceptual Similarity via Real-Time fMRI Neurofeedback. Journal of Vision, 2018, 18, 11.	0.1	10
52	Lingering representations of stimuli influence recall organization. Neuropsychologia, 2017, 97, 72-82.	0.7	15
53	Neural Differentiation of Incorrectly Predicted Memories. Journal of Neuroscience, 2017, 37, 2022-2031.	1.7	64
54	Computational approaches to fMRI analysis. Nature Neuroscience, 2017, 20, 304-313.	7.1	185

4

#	Article	IF	CITATIONS
55	Shared memories reveal shared structure in neural activity across individuals. Nature Neuroscience, 2017, 20, 115-125.	7.1	443
56	Retrieval as a Fast Route to Memory Consolidation. Trends in Cognitive Sciences, 2017, 21, 573-576.	4.0	149
57	Multiple-object Tracking as a Tool for Parametrically Modulating Memory Reactivation. Journal of Cognitive Neuroscience, 2017, 29, 1339-1354.	1.1	3
58	Does mental context drift or shift?. Current Opinion in Behavioral Sciences, 2017, 17, 141-146.	2.0	78
59	Discovering Event Structure in Continuous Narrative Perception and Memory. Neuron, 2017, 95, 709-721.e5.	3.8	566
60	Sleep Benefits Memory for Semantic Category Structure While Preserving Exemplar-Specific Information. Scientific Reports, 2017, 7, 14869.	1.6	60
61	Reinstated episodic context guides sampling-based decisions for reward. Nature Neuroscience, 2017, 20, 997-1003.	7.1	120
62	Complementary learning systems within the hippocampus: a neural network modelling approach to reconciling episodic memory with statistical learning. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160049.	1.8	305
63	The computational nature of memory modification. ELife, 2017, 6, .	2.8	92
64	Enhanced perceptual processing of visual context benefits later memory. Journal of Vision, 2017, 17, 95.	0.1	0
65	Enabling factor analysis on thousand-subject neuroimaging datasets. , 2016, , .		9
66	A neural signature of contextually mediated intentional forgetting. Psychonomic Bulletin and Review, 2016, 23, 1534-1542.	1.4	32
67	A Probability Distribution over Latent Causes, in the Orbitofrontal Cortex. Journal of Neuroscience, 2016, 36, 7817-7828.	1.7	77
68	Neuroscience: Incepting Associations. Current Biology, 2016, 26, R673-R675.	1.8	6
69	Neural evidence of the strategic choice between working memory and episodic memory in prospective remembering. Neuropsychologia, 2016, 93, 280-288.	0.7	24
70	Statistical learning of temporal community structure in the hippocampus. Hippocampus, 2016, 26, 3-8.	0.9	220
71	Neural pattern change during encoding of a narrative predicts retrospective duration estimates. ELife, 2016, 5, .	2.8	77
72	Neurocognitive therapeutics: from concept to application in the treatment of negative attention bias. Biology of Mood & Anxiety Disorders, 2015, 5, 1.	4.7	47

#	Article	IF	CITATIONS
73	Closed-loop training of attention with real-time brain imaging. Nature Neuroscience, 2015, 18, 470-475.	7.1	254
74	Discovering latent causes in reinforcement learning. Current Opinion in Behavioral Sciences, 2015, 5, 43-50.	2.0	104
75	Competition between items in working memory leads to forgetting. Nature Communications, 2014, 5, 5768.	5.8	71
76	Statistical Computations Underlying the Dynamics of Memory Updating. PLoS Computational Biology, 2014, 10, e1003939.	1.5	70
77	Pruning of memories by context-based prediction error. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 8997-9002.	3.3	108
78	What do differences between multi-voxel and univariate analysis mean? How subject-, voxel-, and trial-level variance impact fMRI analysis. NeuroImage, 2014, 97, 271-283.	2.1	245
79	Decomposing spatiotemporal brain patterns into topographic latent sources. NeuroImage, 2014, 98, 91-102.	2.1	11
80	Briefly Cuing Memories Leads to Suppression of Their Neural Representations. Journal of Neuroscience, 2014, 34, 8010-8020.	1.7	31
81	Topographic Factor Analysis: A Bayesian Model for Inferring Brain Networks from Neural Data. PLoS ONE, 2014, 9, e94914.	1.1	31
82	Moderate levels of activation lead to forgetting in the think/no-think paradigm. Neuropsychologia, 2013, 51, 2371-2388.	0.7	95
83	Mechanisms supporting superior source memory for familiar items: A multi-voxel pattern analysis study. Neuropsychologia, 2012, 50, 3015-3026.	0.7	28
84	A topographic latent source model for fMRI data. NeuroImage, 2011, 57, 89-100.	2.1	29
85	How hippocampus and cortex contribute to recognition memory: Revisiting the complementary learning systems model. Hippocampus, 2010, 20, 1217-1227.	0.9	182
86	Moderate Excitation Leads to Weakening of Perceptual Representations. Cerebral Cortex, 2010, 20, 2760-2770.	1.6	80
87	Recollection, Familiarity, and Cortical Reinstatement: A Multivoxel Pattern Analysis. Neuron, 2009, 63, 697-708.	3.8	237
88	A context maintenance and retrieval model of organizational processes in free recall Psychological Review, 2009, 116, 129-156.	2.7	490
89	Event-related potential correlates of interference effects on recognition memory. Psychonomic Bulletin and Review, 2008, 15, 36-43.	1.4	21
90	A neural network model of retrieval-induced forgetting Psychological Review, 2007, 114, 887-953.	2.7	188

#	Article	IF	CITATIONS
91	Beyond mind-reading: multi-voxel pattern analysis of fMRI data. Trends in Cognitive Sciences, 2006, 10, 424-430.	4.0	2,083
92	Declarative Memory: Sleep Protects New Memories from Interference. Current Biology, 2006, 16, R596-R597.	1.8	5
93	How Inhibitory Oscillations Can Train Neural Networks and Punish Competitors. Neural Computation, 2006, 18, 1577-1610.	1.3	107
94	Methods for reducing interference in the Complementary Learning Systems model: Oscillating inhibition and autonomous memory rehearsal. Neural Networks, 2005, 18, 1212-1228.	3.3	72
95	Category-Specific Cortical Activity Precedes Retrieval During Memory Search. Science, 2005, 310, 1963-1966.	6.0	576
96	Modeling hippocampal and neocortical contributions to recognition memory: A complementary-learning-systems approach Psychological Review, 2003, 110, 611-646.	2.7	1,091
97	Differential effects of list strength on recollection and familiarity. Journal of Experimental Psychology: Learning Memory and Cognition, 2002, 28, 1083-94.	0.7	26
98	THE COGNITIVE NEUROSCIENCE OF CONSTRUCTIVE MEMORY. Annual Review of Psychology, 1998, 49, 289-318.	9.9	714
99	False recognition in younger and older adults: Exploring the characteristics of illusory memories. Memory and Cognition, 1997, 25, 838-848.	0.9	481