
Julen Munarriz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/521369/publications.pdf Version: 2024-02-01

IIII EN MIINADDIZ

#	Article	IF	CITATIONS
1	Atomic shell structure from Born probabilities: Comparison to other shell descriptors and persistence in molecules. Journal of Chemical Physics, 2022, 156, 164103.	3.0	4
2	Fluxionality of Subnano Clusters Reshapes the Activity Volcano of Electrocatalysis. ChemCatChem, 2022, 14, .	3.7	10
3	Copper-Catalyzed Azide–Alkyne Cycloaddition (CuAAC) by Functionalized NHC-Based Polynuclear Catalysts: Scope and Mechanistic Insights. Organometallics, 2022, 41, 2154-2169.	2.3	16
4	Energetics of Electron Pairs in Electrophilic Aromatic Substitutions. Molecules, 2021, 26, 513.	3.8	4
5	Interplay between non-covalent interactions in 1D supramolecular polymers based on 1,4-bis(iodoethynyl)benzene. Physical Chemistry Chemical Physics, 2021, 23, 3531-3542.	2.8	3
6	Impact of Green Cosolvents on the Catalytic Dehydrogenation of Formic Acid: The Case of Iridium Catalysts Bearing NHC-phosphane Ligands. Inorganic Chemistry, 2021, 60, 15497-15508.	4.0	11
7	Towards a Single Chemical Model for Understanding Lanthanide Hexaborides. Angewandte Chemie, 2020, 132, 22873-22878.	2.0	2
8	Towards a Single Chemical Model for Understanding Lanthanide Hexaborides. Angewandte Chemie - International Edition, 2020, 59, 22684-22689.	13.8	0
9	Real-Space Approach to the Reaction Force: Understanding the Origin of Synchronicity/Nonsynchronicity in Multibond Chemical Reactions. Journal of Physical Chemistry A, 2020, 124, 1959-1972.	2.5	12
10	Alloying with Sn Suppresses Sintering of Size-Selected Subnano Pt Clusters on SiO ₂ with and without Adsorbates. Chemistry of Materials, 2020, 32, 8595-8605.	6.7	19
11	Fjord-Edge Graphene Nanoribbons with Site-Specific Nitrogen Substitution. Journal of the American Chemical Society, 2020, 142, 18093-18102.	13.7	24
12	lridium catalysts featuring amine-containing ligands for the dehydrogenation of formic acid. Journal of Organometallic Chemistry, 2020, 916, 121259.	1.8	3
13	Carboxylate-Assisted β-(<i>Z</i>) Stereoselective Hydrosilylation of Terminal Alkynes Catalyzed by a Zwitterionic Bis-NHC Rhodium(III) Complex. ACS Catalysis, 2020, 10, 7367-7380.	11.2	24
14	Dynamical Bonding Driving Mixed Valency in a Metal Boride. Angewandte Chemie - International Edition, 2020, 59, 10996-11002.	13.8	5
15	Dynamical Bonding Driving Mixed Valency in a Metal Boride. Angewandte Chemie, 2020, 132, 11089-11095.	2.0	4
16	β-(Z) Selectivity Control by Cyclometalated Rhodium(III)–Triazolylidene Homogeneous and Heterogeneous Terminal Alkyne Hydrosilylation Catalysts. ACS Catalysis, 2020, 10, 13334-13351.	11.2	28
17	Mechanistic Insights on the Functionalization of CO 2 with Amines and Hydrosilanes Catalyzed by a Zwitterionic Iridium Carboxylateâ€Functionalized Bisâ€NHC Catalyst. ChemCatChem, 2019, 11, 5524-5535.	3.7	20
18	A first step towards quantum energy potentials of electron pairs. Physical Chemistry Chemical Physics, 2019, 21, 4215-4223.	2.8	11

2

Julen Munarriz

#	Article	IF	CITATIONS
19	Valenceâ€Shell Electronâ€Pair Repulsion Theory Revisited: An Explanation for Core Polarization. Chemistry - A European Journal, 2019, 25, 10938-10945.	3.3	7
20	A bonding evolution theory study on the catalytic Noyori hydrogenation reaction. Molecular Physics, 2019, 117, 1315-1324.	1.7	14
21	Understanding the reaction mechanism of the oxidative addition of ammonia by (PXP)Ir(<scp>i</scp>) complexes: the role of the X group. Physical Chemistry Chemical Physics, 2018, 20, 1105-1113.	2.8	18
22	Orbital Physics of Perovskites for the Oxygen Evolution Reaction. Topics in Catalysis, 2018, 61, 267-275.	2.8	16
23	Principles determining the activity of magnetic oxides for electron transfer reactions. Journal of Catalysis, 2018, 361, 331-338.	6.2	105
24	A highly efficient Ir-catalyst for the solventless dehydrogenation of formic acid: the key role of an N-heterocyclic olefin. Green Chemistry, 2018, 20, 4875-4879.	9.0	29
25	Building Fluorinated Hybrid Crystals: Understanding the Role of Noncovalent Interactions. Crystal Growth and Design, 2018, 18, 6901-6910.	3.0	14
26	On the Role of Ferromagnetic Interactions in Highly Active Moâ€Based Catalysts for Ammonia Synthesis. ChemPhysChem, 2018, 19, 2843-2847.	2.1	16
27	Analysis of the Magnetic Entropy in Oxygen Reduction Reactions Catalysed by Manganite Perovskites. ChemCatChem, 2017, 9, 3358-3363.	3.7	22
28	A well-defined NHC–Ir(iii) catalyst for the silylation of aromatic C–H bonds: substrate survey and mechanistic insights. Chemical Science, 2017, 8, 4811-4822.	7.4	44
29	Efficient preparation of carbamates by Rh-catalysed oxidative carbonylation: unveiling the role of the oxidant. Chemical Communications, 2017, 53, 404-407.	4.1	15
30	Two-Dimensional Arrangements of Bis(haloethynyl)benzenes Combining Halogen and Hydrogen Interactions. Crystal Growth and Design, 2017, 17, 6212-6223.	3.0	16
31	N-Heterocyclic olefins as ancillary ligands in catalysis: a study of their behaviour in transfer hydrogenation reactions. Dalton Transactions, 2016, 45, 12835-12845.	3.3	37
32	Efficient Rhodium atalyzed Multicomponent Reaction for the Synthesis of Novel Propargylamines. Chemistry - A European Journal, 2015, 21, 17701-17707.	3.3	27
33	An Insight into Transfer Hydrogenation Reactions Catalysed by Iridium(III) Bisâ€Nâ€heterocyclic Carbenes. European Journal of Inorganic Chemistry, 2015, 2015, 4388-4395.	2.0	17
34	Orthometallation of N-substituents at the NHC ligand of [Rh(Cl)(COD)(NHC)] complexes: its role in the catalytic hydrosilylation of ketones. Catalysis Science and Technology, 2015, 5, 1878-1887.	4.1	9
35	A bimetallic iridium(ii) catalyst: [{Ir(IDipp)(H)}2][BF4]2 (IDipp =) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf 50	102 Td (1, 4.1	3-bis(2,6-diis