Kaveh Ashrafi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5213475/publications.pdf

Version: 2024-02-01

279798 361022 2,937 36 23 citations h-index g-index papers

37 37 37 3809 docs citations times ranked citing authors all docs

35

#	Article	IF	CITATIONS
1	Neural production of kynurenic acid in <i>Caenorhabditis elegans</i> requires the AAT-1 transporter. Genes and Development, 2020, 34, 1033-1038.	5.9	5
2	Spectroscopic coherent Raman imaging of Caenorhabditis elegans reveals lipid particle diversity. Nature Chemical Biology, 2020, 16, 1087-1095.	8.0	35
3	Age- and stress-associated C. elegans granulins impair lysosomal function and induce a compensatory HLH-30/TFEB transcriptional response. PLoS Genetics, 2019, 15, e1008295.	3.5	23
4	Intestinal peroxisomal fatty acid \hat{l}^2 -oxidation regulates neural serotonin signaling through a feedback mechanism. PLoS Biology, 2019, 17, e3000242.	5.6	19
5	Tau/MAPT disease-associated variant A152T alters tau function and toxicity via impaired retrograde axonal transport. Human Molecular Genetics, 2019, 28, 1498-1514.	2.9	26
6	Kynurenic acid accumulation underlies learning and memory impairment associated with aging. Genes and Development, 2018, 32, 14-19.	5.9	19
7	The mTOR Target S6 Kinase Arrests Development in Caenorhabditis elegans When the Heat-Shock Transcription Factor Is Impaired. Genetics, 2018, 210, 999-1009.	2.9	3
8	The beneficial effects of dietary restriction on learning are distinct from its effects on longevity and mediated by depletion of a neuroinhibitory metabolite. PLoS Biology, 2017, 15, e2002032.	5.6	18
9	Phenotypic, chemical and functional characterization of cyclic nucleotide phosphodiesterase 4 (PDE4) as a potential anthelmintic drug target. PLoS Neglected Tropical Diseases, 2017, 11, e0005680.	3.0	36
10	Investigating Connections between Metabolism, Longevity, and Behavior in Caenorhabditis elegans. Trends in Endocrinology and Metabolism, 2016, 27, 586-596.	7.1	39
11	Neural Regulatory Pathways of Feeding and Fat in <i>Caenorhabditis elegans</i> . Annual Review of Genetics, 2015, 49, 413-438.	7.6	39
12	Kynurenic Acid Is a Nutritional Cue that Enables Behavioral Plasticity. Cell, 2015, 160, 119-131.	28.9	57
13	Insights and challenges in using <i>C. elegans </i> for investigation of fat metabolism. Critical Reviews in Biochemistry and Molecular Biology, 2015, 50, 69-84.	5.2	37
14	Conserved Genetic Interactions between Ciliopathy Complexes Cooperatively Support Ciliogenesis and Ciliary Signaling. PLoS Genetics, 2015, 11, e1005627.	3.5	71
15	Stressing about misplaced fat is a key to longevity. ELife, 2015, 4, .	6.0	3
16	Dopamine Signaling Regulates Fat Content through \hat{l}^2 -Oxidation in Caenorhabditis elegans. PLoS ONE, 2014, 9, e85874.	2.5	20
17	Loss of a Neural AMP-Activated Kinase Mimics the Effects of Elevated Serotonin on Fat, Movement, and Hormonal Secretions. PLoS Genetics, 2014, 10, e1004394.	3.5	39
18	OCT1 is a high-capacity thiamine transporter that regulates hepatic steatosis and is a target of metformin. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 9983-9988.	7.1	203

#	Article	IF	CITATIONS
19	Defects in the C. elegans acyl-CoA Synthase, acs-3, and Nuclear Hormone Receptor, nhr-25, Cause Sensitivity to Distinct, but Overlapping Stresses. PLoS ONE, 2014, 9, e92552.	2.5	35
20	Sumoylated NHR-25/NR5A Regulates Cell Fate during C. elegans Vulval Development. PLoS Genetics, 2013, 9, e1003992.	3.5	36
21	In Silico Molecular Comparisons of C. elegans and Mammalian Pharmacology Identify Distinct Targets That Regulate Feeding. PLoS Biology, 2013, 11, e1001712.	5.6	18
22	AMP-Activated Kinase Links Serotonergic Signaling to Glutamate Release for Regulation of Feeding Behavior in C.Âelegans. Cell Metabolism, 2012, 16, 113-121.	16.2	66
23	Analyses of C. elegans Fat Metabolic Pathways. Methods in Cell Biology, 2012, 107, 383-407.	1.1	36
24	Using C. elegans to dissect fat and feeding regulatory pathways. FASEB Journal, 2012, 26, 221.1.	0.5	0
25	Hyperactive Neuroendocrine Secretion Causes Size, Feeding, and Metabolic Defects of C. elegans Bardet-Biedl Syndrome Mutants. PLoS Biology, 2011, 9, e1001219.	5.6	41
26	A whole-organism screen identifies new regulators of fat storage. Nature Chemical Biology, 2011, 7, 206-213.	8.0	76
27	Regulation of C. elegans Fat Uptake and Storage by Acyl-CoA Synthase-3 Is Dependent on NR5A Family Nuclear Hormone Receptor nhr-25. Cell Metabolism, 2010, 12, 398-410.	16.2	57
28	<i>Caenorhabditis elegans</i> as an emerging model for studying the basic biology of obesity. DMM Disease Models and Mechanisms, 2009, 2, 224-229.	2.4	89
29	C. elegans fat storage and metabolic regulation. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2009, 1791, 474-478.	2.4	94
30	Rictor/TORC2 Regulates Caenorhabditis elegans Fat Storage, Body Size, and Development through sgk-1. PLoS Biology, 2009, 7, e1000060.	5.6	173
31	Serotonin Regulates C. elegans Fat and Feeding through Independent Molecular Mechanisms. Cell Metabolism, 2008, 7, 533-544.	16.2	175
32	Neural and Molecular Dissection of a C. elegans Sensory Circuit that Regulates Fat and Feeding. Cell Metabolism, 2008, 8, 118-131.	16.2	180
33	A TRPV Channel Modulates C. elegans Neurosecretion, Larval Starvation Survival, and Adult Lifespan. PLoS Genetics, 2008, 4, e1000213.	3.5	91
34	Obesity and the regulation of fat metabolism. WormBook, 2007, , 1-20.	5.3	129
35	Mapping out starvation responses. Cell Metabolism, 2006, 3, 235-236.	16.2	9
36	Genome-wide RNAi analysis of Caenorhabditis elegans fat regulatory genes. Nature, 2003, 421, 268-272.	27.8	940

3