
Kaveh Ashrafi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5213475/publications.pdf Version: 2024-02-01

KAVEH ASHDAFI

#	Article	IF	CITATIONS
1	Genome-wide RNAi analysis of Caenorhabditis elegans fat regulatory genes. Nature, 2003, 421, 268-272.	27.8	940
2	OCT1 is a high-capacity thiamine transporter that regulates hepatic steatosis and is a target of metformin. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 9983-9988.	7.1	203
3	Neural and Molecular Dissection of a C. elegans Sensory Circuit that Regulates Fat and Feeding. Cell Metabolism, 2008, 8, 118-131.	16.2	180
4	Serotonin Regulates C. elegans Fat and Feeding through Independent Molecular Mechanisms. Cell Metabolism, 2008, 7, 533-544.	16.2	175
5	Rictor/TORC2 Regulates Caenorhabditis elegans Fat Storage, Body Size, and Development through sgk-1. PLoS Biology, 2009, 7, e1000060.	5.6	173
6	Obesity and the regulation of fat metabolism. WormBook, 2007, , 1-20.	5.3	129
7	C. elegans fat storage and metabolic regulation. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2009, 1791, 474-478.	2.4	94
8	A TRPV Channel Modulates C. elegans Neurosecretion, Larval Starvation Survival, and Adult Lifespan. PLoS Genetics, 2008, 4, e1000213.	3.5	91
9	<i>Caenorhabditis elegans</i> as an emerging model for studying the basic biology of obesity. DMM Disease Models and Mechanisms, 2009, 2, 224-229.	2.4	89
10	A whole-organism screen identifies new regulators of fat storage. Nature Chemical Biology, 2011, 7, 206-213.	8.0	76
11	Conserved Genetic Interactions between Ciliopathy Complexes Cooperatively Support Ciliogenesis and Ciliary Signaling. PLoS Genetics, 2015, 11, e1005627.	3.5	71
12	AMP-Activated Kinase Links Serotonergic Signaling to Glutamate Release for Regulation of Feeding Behavior in C.Âelegans. Cell Metabolism, 2012, 16, 113-121.	16.2	66
13	Regulation of C. elegans Fat Uptake and Storage by Acyl-CoA Synthase-3 Is Dependent on NR5A Family Nuclear Hormone Receptor nhr-25. Cell Metabolism, 2010, 12, 398-410.	16.2	57
14	Kynurenic Acid Is a Nutritional Cue that Enables Behavioral Plasticity. Cell, 2015, 160, 119-131.	28.9	57
15	Hyperactive Neuroendocrine Secretion Causes Size, Feeding, and Metabolic Defects of C. elegans Bardet-Biedl Syndrome Mutants. PLoS Biology, 2011, 9, e1001219.	5.6	41
16	Loss of a Neural AMP-Activated Kinase Mimics the Effects of Elevated Serotonin on Fat, Movement, and Hormonal Secretions. PLoS Genetics, 2014, 10, e1004394.	3.5	39
17	Neural Regulatory Pathways of Feeding and Fat in <i>Caenorhabditis elegans</i> . Annual Review of Genetics, 2015, 49, 413-438.	7.6	39
18	Investigating Connections between Metabolism, Longevity, and Behavior in Caenorhabditis elegans. Trends in Endocrinology and Metabolism, 2016, 27, 586-596.	7.1	39

Kaveh Ashrafi

#	Article	IF	CITATIONS
19	Insights and challenges in using <i>C. elegans</i> for investigation of fat metabolism. Critical Reviews in Biochemistry and Molecular Biology, 2015, 50, 69-84.	5.2	37
20	Analyses of C. elegans Fat Metabolic Pathways. Methods in Cell Biology, 2012, 107, 383-407.	1.1	36
21	Sumoylated NHR-25/NR5A Regulates Cell Fate during C. elegans Vulval Development. PLoS Genetics, 2013, 9, e1003992.	3.5	36
22	Phenotypic, chemical and functional characterization of cyclic nucleotide phosphodiesterase 4 (PDE4) as a potential anthelmintic drug target. PLoS Neglected Tropical Diseases, 2017, 11, e0005680.	3.0	36
23	Spectroscopic coherent Raman imaging of Caenorhabditis elegans reveals lipid particle diversity. Nature Chemical Biology, 2020, 16, 1087-1095.	8.0	35
24	Defects in the C. elegans acyl-CoA Synthase, acs-3, and Nuclear Hormone Receptor, nhr-25, Cause Sensitivity to Distinct, but Overlapping Stresses. PLoS ONE, 2014, 9, e92552.	2.5	35
25	Tau/MAPT disease-associated variant A152T alters tau function and toxicity via impaired retrograde axonal transport. Human Molecular Genetics, 2019, 28, 1498-1514.	2.9	26
26	Age- and stress-associated C. elegans granulins impair lysosomal function and induce a compensatory HLH-30/TFEB transcriptional response. PLoS Genetics, 2019, 15, e1008295.	3.5	23
27	Dopamine Signaling Regulates Fat Content through β-Oxidation in Caenorhabditis elegans. PLoS ONE, 2014, 9, e85874.	2.5	20
28	Kynurenic acid accumulation underlies learning and memory impairment associated with aging. Genes and Development, 2018, 32, 14-19.	5.9	19
29	Intestinal peroxisomal fatty acid β-oxidation regulates neural serotonin signaling through a feedback mechanism. PLoS Biology, 2019, 17, e3000242.	5.6	19
30	In Silico Molecular Comparisons of C. elegans and Mammalian Pharmacology Identify Distinct Targets That Regulate Feeding. PLoS Biology, 2013, 11, e1001712.	5.6	18
31	The beneficial effects of dietary restriction on learning are distinct from its effects on longevity and mediated by depletion of a neuroinhibitory metabolite. PLoS Biology, 2017, 15, e2002032.	5.6	18
32	Mapping out starvation responses. Cell Metabolism, 2006, 3, 235-236.	16.2	9
33	Neural production of kynurenic acid in <i>Caenorhabditis elegans</i> requires the AAT-1 transporter. Genes and Development, 2020, 34, 1033-1038.	5.9	5
34	The mTOR Target S6 Kinase Arrests Development in Caenorhabditis elegans When the Heat-Shock Transcription Factor Is Impaired. Genetics, 2018, 210, 999-1009.	2.9	3
35	Stressing about misplaced fat is a key to longevity. ELife, 2015, 4, .	6.0	3
36	Using C. elegans to dissect fat and feeding regulatory pathways. FASEB Journal, 2012, 26, 221.1.	0.5	0