
Michael Bode

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5213198/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Regulating land use in the catchment of the Great Barrier Reef. Land Use Policy, 2022, 115, 106001.	5.6	0
2	Reply to: Conclusions of low extinction risk for most species of reef-building corals are premature. Nature Ecology and Evolution, 2022, 6, 359-360.	7.8	0
3	Choosing optimal trigger points for ex situ, in toto conservation of single population threatened species. PLoS ONE, 2022, 17, e0266244.	2.5	0
4	Individual variation in marine larvalâ€fish swimming speed and the emergence of dispersal kernels. Oikos, 2022, 2022, .	2.7	7
5	Using ensemble modeling to predict the impacts of assisted migration on recipient ecosystems. Conservation Biology, 2021, 35, 678-687.	4.7	16
6	Recent advances of quantitative modeling to support invasive species eradication on islands. Conservation Science and Practice, 2021, 3, e246.	2.0	20
7	Modeling herbivore functional responses causing boomâ€bust dynamics following predator removal. Ecology and Evolution, 2021, 11, 2209-2220.	1.9	1
8	The population sizes and global extinction risk of reef-building coral species at biogeographic scales. Nature Ecology and Evolution, 2021, 5, 663-669.	7.8	36
9	Reconstructing lost ecosystems: A risk analysis framework for planning multispecies reintroductions under severe uncertainty. Journal of Applied Ecology, 2021, 58, 2171.	4.0	4
10	Turing patterns in a diffusive Holling–Tanner predator-prey model with an alternative food source for the predator. Communications in Nonlinear Science and Numerical Simulation, 2021, 99, 105802.	3.3	13
11	Reproductive hyperallometry and managing the world's fisheries. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	31
12	The spatial footprint and patchiness of largeâ€scale disturbances on coral reefs. Global Change Biology, 2021, 27, 4825-4838.	9.5	26
13	Larval dispersal and fishing pressure influence recruitment in a coral reef fishery. Journal of Applied Ecology, 2021, 58, 2924-2935.	4.0	6
14	Covert rewilding: Modelling the detection of an unofficial translocation of Tasmanian devils to the Australian mainland. Conservation Letters, 2021, 14, e12787.	5.7	1
15	Simultaneous invasive alien predator eradication delivers the best outcomes for protected island species. Biological Invasions, 2020, 22, 1085-1095.	2.4	10
16	A connectivity portfolio effect stabilizes marine reserve performance. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 25595-25600.	7.1	55
17	Long-term shifts in the colony size structure of coral populations along the Great Barrier Reef. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20201432.	2.6	58
18	Net benefit and cost-effectiveness of universal iron-containing multiple micronutrient powders for young children in 78 countries: a microsimulation study. The Lancet Global Health, 2020, 8, e1071-e1080.	6.3	32

#	Article	IF	CITATIONS
19	A guide to ecosystem models and their environmental applications. Nature Ecology and Evolution, 2020, 4, 1459-1471.	7.8	90
20	The relative conservation impact of strategies that prioritize biodiversity representation, threats, and protection costs. Conservation Science and Practice, 2020, 2, e221.	2.0	9
21	Developmental cost theory predicts thermal environment and vulnerability to global warming. Nature Ecology and Evolution, 2020, 4, 406-411.	7.8	40
22	Australian birds could benefit from predator exclusion fencing. Conservation Science and Practice, 2020, 2, e168.	2.0	4
23	Successful validation of a larval dispersal model using genetic parentage data. PLoS Biology, 2019, 17, e3000380.	5.6	68
24	Underestimating the benefits of marine protected areas for the replenishment of fished populations. Frontiers in Ecology and the Environment, 2019, 17, 407-413.	4.0	53
25	Systematic planning can rapidly close the protection gap in Australian mammal havens. Conservation Letters, 2019, 12, e12611.	5.7	12
26	General rules for environmental management to prioritise social ecological systems research based on a value of information approach. Journal of Applied Ecology, 2019, 56, 2079-2090.	4.0	17
27	Adaptive management informs conservation and monitoring of Australia's threatened malleefowl. Biological Conservation, 2019, 233, 31-40.	4.1	9
28	The context dependence of frontier versus wilderness conservation priorities. Conservation Letters, 2019, 12, e12632.	5.7	18
29	Superadditive and subadditive dynamics are not inherent to the types of interacting threat. PLoS ONE, 2019, 14, e0211444.	2.5	4
30	Costs are not necessarily correlated with threats in conservation landscapes. Conservation Letters, 2019, 12, e12663.	5.7	10
31	How conservation initiatives go to scale. Nature Sustainability, 2019, 2, 935-940.	23.7	38
32	A novel approach to assessing the ecosystemâ€wide impacts of reintroductions. Ecological Applications, 2019, 29, e01811.	3.8	25
33	Australia's mammal fauna requires a strategic and enhanced network of predator-free havens. Nature Ecology and Evolution, 2018, 2, 410-411.	7.8	32
34	Bigger or better: The relative benefits of protected area network expansion and enforcement for the conservation of an exploited species. Conservation Letters, 2018, 11, e12433.	5.7	35
35	Ocean zoning within a sparing versus sharing framework. Theoretical Ecology, 2018, 11, 245-254.	1.0	12
36	Estimating dispersal kernels using genetic parentage data. Methods in Ecology and Evolution, 2018, 9, 490-501.	5.2	22

#	Article	IF	CITATIONS
37	On the extinction of the singleâ€authored paper: The causes and consequences of increasingly collaborative applied ecological research. Journal of Applied Ecology, 2018, 55, 1-4.	4.0	34
38	Improving private land conservation with outcomeâ€based biodiversity payments. Journal of Applied Ecology, 2018, 55, 1476-1485.	4.0	12
39	Oak habitat recovery on California's largest islands: Scenarios for the role of corvid seed dispersal. Journal of Applied Ecology, 2018, 55, 1185-1194.	4.0	16
40	Size and spacing rules can balance conservation and fishery management objectives for marine protected areas. Journal of Applied Ecology, 2018, 55, 1050-1059.	4.0	8
41	Degrees of population-level susceptibility of Australian terrestrial non-volant mammal species to predation by the introduced red fox (Vulpes vulpes) and feral cat (Felis catus). Wildlife Research, 2018, 45, 645.	1.4	63
42	Modelling the spread and control of cherry guava on Lord Howe Island. Biological Conservation, 2018, 227, 252-258.	4.1	5
43	Havens for threatened Australian mammals: the contributions of fenced areas and offshore islands to the protection of mammal species susceptible to introduced predators. Wildlife Research, 2018, 45, 627.	1.4	125
44	Introduced species that overcome life history tradeoffs can cause native extinctions. Nature Communications, 2018, 9, 2131.	12.8	64
45	Resilient reefs may exist, but can larval dispersal models find them?. PLoS Biology, 2018, 16, e2005964.	5.6	21
46	Risk-Benefit and Cost-Effectiveness of Universal Iron Interventions for Public Health Control of Anemia in Young Children in 78 Countries: A Microsimulation Study. Blood, 2018, 132, 2276-2276.	1.4	2
47	Minimizing species extinctions through strategic planning for conservation fencing. Conservation Biology, 2017, 31, 1029-1038.	4.7	17
48	Larval fish dispersal in a coral-reef seascape. Nature Ecology and Evolution, 2017, 1, 148.	7.8	101
49	Confronting the risks of large-scale invasive species control. Nature Ecology and Evolution, 2017, 1, 172.	7.8	71
50	Reef-fish larval dispersal patterns validate no-take marine reserve network connectivity that links human communities. Coral Reefs, 2017, 36, 791-801.	2.2	30
51	Marine Dispersal Scales Are Congruent over Evolutionary and Ecological Time. Current Biology, 2017, 27, 149-154.	3.9	45
52	Waiting can be an optimal conservation strategy, even in a crisis discipline. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 10497-10502.	7.1	18
53	Modeling dynamics of native and invasive species to guide prioritization of management actions. Ecosphere, 2017, 8, e01822.	2.2	18
54	Ensemble ecosystem modeling for predicting ecosystem response to predator reintroduction. Conservation Biology, 2017, 31, 376-384.	4.7	34

#	Article	IF	CITATIONS
55	Cost and feasibility of a barrier to halt the spread of invasive cane toads in arid <scp>A</scp> ustralia: incorporating expert knowledge into modelâ€based decisionâ€making. Journal of Applied Ecology, 2017, 54, 216-224.	4.0	20
56	Revealing beliefs: using ensemble ecosystem modelling to extrapolate expert beliefs to novel ecological scenarios. Methods in Ecology and Evolution, 2017, 8, 1012-1021.	5.2	27
57	Simple rules can guide whether land- or ocean-based conservation will best benefit marine ecosystems. PLoS Biology, 2017, 15, e2001886.	5.6	27
58	Planning Marine Reserve Networks for Both Feature Representation and Demographic Persistence Using Connectivity Patterns. PLoS ONE, 2016, 11, e0154272.	2.5	17
59	Optimal management of a stochastically varying population when policy adjustment is costly. Ecological Applications, 2016, 26, 808-817.	3.8	43
60	Prioritizing eradication actions on islands: it's not all or nothing. Journal of Applied Ecology, 2016, 53, 733-741.	4.0	33
61	Placing invasive species management in a spatiotemporal context. Ecological Applications, 2016, 26, 712-725.	3.8	37
62	Limitations of outsourcing onâ€ŧheâ€ground biodiversity conservation. Conservation Biology, 2016, 30, 1245-1254.	4.7	34
63	Translocation strategies for multiple species depend on interspecific interaction type. Ecological Applications, 2016, 26, 1186-1197.	3.8	21
64	Hyperstability masks declines in bumphead parrotfish (Bolbometopon muricatum) populations. Coral Reefs, 2016, 35, 751-763.	2.2	43
65	Models that predict ecosystem impacts of reintroductions should consider uncertainty and distinguish between direct and indirect effects. Biological Conservation, 2016, 196, 211-212.	4.1	9
66	Resolving future fire management conflicts using multicriteria decision making. Conservation Biology, 2016, 30, 196-205.	4.7	33
67	Largeâ€scale, multidirectional larval connectivity among coral reef fish populations in the Great Barrier Reef Marine Park. Molecular Ecology, 2016, 25, 6039-6054.	3.9	79
68	Returns from matching management resolution to ecological variation in a coral reef fishery. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20152828.	2.6	15
69	Reserves in Context: Planning for Leakage from Protected Areas. PLoS ONE, 2015, 10, e0129441.	2.5	15
70	Effective conservation requires clear objectives and prioritizing actions, not places or species. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E4342.	7.1	62
71	Optimal Conservation Outcomes Require Both Restoration and Protection. PLoS Biology, 2015, 13, e1002052.	5.6	185
72	Eradicating down the food chain: optimal multispecies eradication schedules for a commonly encountered invaded island ecosystem. Journal of Applied Ecology, 2015, 52, 571-579.	4.0	35

#	Article	IF	CITATIONS
73	Placing invasive species management in a spatiotemporal context. , 2015, , 150824173631007.		2
74	A conservation planning approach to mitigate the impacts of leakage from protected area networks. Conservation Biology, 2015, 29, 765-774.	4.7	31
75	Evolutionary consequences of fertilization mode for reproductive phenology and asynchrony. Marine Ecology - Progress Series, 2015, 537, 23-38.	1.9	5
76	Cost-efficient fenced reserves for conservation: single large or two small?. , 2014, 24, 1780-1792.		20
77	Synthesis and review: delivering on conservation promises: the challenges of managing and measuring conservation outcomes. Environmental Research Letters, 2014, 9, 085002.	5.2	9
78	Minimizing the Cost of Keeping Options Open for Conservation in a Changing Climate. Conservation Biology, 2014, 28, 646-653.	4.7	16
79	A novel method for estimating the number of species within a region. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20133009.	2.6	6
80	Inferring extinctions from sighting records of variable reliability. Journal of Applied Ecology, 2014, 51, 251-258.	4.0	38
81	Costs of dispersal alter optimal offspring size in patchy habitats: combining theory and data for a marine invertebrate. Functional Ecology, 2013, 27, 757-765.	3.6	22
82	Interior fences can reduce cost and uncertainty when eradicating invasive species from large islands. Methods in Ecology and Evolution, 2013, 4, 819-827.	5.2	12
83	Spatial control of invasive species in conservation landscapes. Computational Management Science, 2013, 10, 331-351.	1.3	15
84	Dispersal of Grouper Larvae Drives Local Resource Sharing in a Coral Reef Fishery. Current Biology, 2013, 23, 626-630.	3.9	150
85	Acting Optimally for Biodiversity in a World Obsessed with REDD+. Conservation Letters, 2013, 6, 410-417.	5.7	20
86	Estimating physiological tolerances - a comparison of traditional approaches to nonlinear regression techniques. Journal of Experimental Biology, 2013, 216, 2176-82.	1.7	43
87	Choosing cost-effective locations for conservation fences in the local landscape. Wildlife Research, 2012, 39, 192.	1.4	22
88	Species Differences Drive Nonneutral Structure in Pleistocene Coral Communities. American Naturalist, 2012, 180, 577-588.	2.1	14
89	Surrogates for reef fish connectivity when designing marine protected area networks. Marine Ecology - Progress Series, 2012, 466, 155-166.	1.9	20
90	Ecological incumbency impedes stochastic community assembly in Holocene foraminifera from the Huon Peninsula, Papua New Guinea. Paleobiology, 2011, 37, 670-685.	2.0	13

#	Article	IF	CITATIONS
91	Using population viability analysis to guide research and conservation actions for Australia's threatened malleefowl <i>Leipoa ocellata</i> . Oryx, 2011, 45, 513-521.	1.0	21
92	Dispersal connectivity and reserve selection for marine conservation. Ecological Modelling, 2011, 222, 1272-1282.	2.5	79
93	Different dispersal abilities allow reef fish to coexist. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 16317-16321.	7.1	46
94	How to Build an Efficient Conservation Fence. Conservation Biology, 2010, 24, 182-188.	4.7	40
95	Safeguarding Biodiversity and Ecosystem Services in the Little Karoo, South Africa. Conservation Biology, 2010, 24, 1021-1030.	4.7	66
96	Conservation Planning with Multiple Organizations and Objectives. Conservation Biology, 2010, 25, no-no.	4.7	65
97	Phenotype–environment mismatches reduce connectivity in the sea. Ecology Letters, 2010, 13, 128-140.	6.4	234
98	Resolving conflicts in fire management using decision theory: assetâ€protection versus biodiversity conservation. Conservation Letters, 2010, 3, 215-223.	5.7	72
99	Barometer of Life: More Action, Not More Data. Science, 2010, 329, 141-141.	12.6	21
100	Habitat vulnerability in conservation planning—when it matters and how much. Conservation Letters, 2010, 3, 404-414.	5.7	28
101	Effective conservation planning requires learning and adaptation. Frontiers in Ecology and the Environment, 2010, 8, 431-437.	4.0	97
102	Fire management for biodiversity conservation: Key research questions and our capacity to answer them. Biological Conservation, 2010, 143, 1928-1939.	4.1	380
103	Spatial Conservation Prioritization: Quantitative Methods and Computational Tools EDITED BY ATTE MOILANEN, KERRIE A. WILSON AND HUGH P. POSSINGHAM xxi + 304 pp., 90 figs, 25 × 20 × 2 cm, ISBN 978 (954776 0 hardcover, GB£ 70.00, Oxford, UK: Oxford University Press, 2009. Environmental Conservation, 2009, 36, 348-349.) 19 1.3	5
104	Evaluating conservation spending for species return: A retrospective analysis in California. Conservation Letters, 2009, 2, 130-137.	5.7	33
105	Cost-effective conservation decisions are robust to uncertainty in the species-area relationship. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, E12-E12.	7.1	6
106	Dynamic marine protected areas can improve the resilience of coral reef systems. Ecology Letters, 2009, 12, 1336-1346.	6.4	69
107	Spatial congruence between biodiversity and ecosystem services in South Africa. Biological Conservation, 2009, 142, 553-562.	4.1	240
108	Efficiently locating conservation boundaries: Searching for the Tasmanian devil facial tumour disease front. Biological Conservation, 2009, 142, 1333-1339.	4.1	10

#	Article	IF	CITATIONS
109	Finite conservation funds mean triage is unavoidable. Trends in Ecology and Evolution, 2009, 24, 183-184.	8.7	86
110	Optimal Dynamic Allocation of Conservation Funding Among Priority Regions. Bulletin of Mathematical Biology, 2008, 70, 2039-2054.	1.9	18
111	The need for speed: informed land acquisitions for conservation in a dynamic property market. Ecology Letters, 2008, 11, 1169-1177.	6.4	71
112	Using complex network metrics to predict the persistence of metapopulations with asymmetric connectivity patterns. Ecological Modelling, 2008, 214, 201-209.	2.5	59
113	Is conservation triage just smart decision making?. Trends in Ecology and Evolution, 2008, 23, 649-654.	8.7	501
114	The Cost of Conservation. Science, 2008, 321, 340-340.	12.6	13
115	Cost-effective global conservation spending is robust to taxonomic group. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 6498-6501.	7.1	170
116	Protecting Biodiversity when Money Matters: Maximizing Return on Investment. PLoS ONE, 2008, 3, e1515.	2.5	72
117	Conserving Biodiversity Efficiently: What to Do, Where, and When. PLoS Biology, 2007, 5, e223.	5.6	398
118	Incorporating the Effects of Socioeconomic Uncertainty into Priority Setting for Conservation Investment. Conservation Biology, 2007, 21, 1463-1474.	4.7	70
119	THE QUICK AND THE DEAD? SPERM COMPETITION AND SEXUAL CONFLICT IN SEA. Evolution; International Journal of Organic Evolution, 2007, 61, 2693-2700.	2.3	44
120	Can culling a threatened species increase its chance of persisting?. Ecological Modelling, 2007, 201, 11-18.	2.5	9
121	Prioritizing global conservation efforts. Nature, 2006, 440, 337-340.	27.8	497
122	Larval dispersal reveals regional sources and sinks in the Great Barrier Reef. Marine Ecology - Progress Series, 2006, 308, 17-25.	1.9	120
123	Optimal management of a stochastically varying population when policy adjustment is costly. , 0, , 150806113437008.		1