
Patrick Gilon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5212902/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The endoplasmic reticulum–plasma membrane tethering protein TMEM24 is a regulator of cellular Ca2+ homeostasis. Journal of Cell Science, 2022, 135, .	2.0	5
2	Glucose inhibits glucagon secretion by decreasing [Ca2+]c and by reducing the efficacy of Ca2+ on exocytosis via somatostatin-dependent and independent mechanisms. Molecular Metabolism, 2022, 61, 101495.	6.5	3
3	LDHA is enriched in human isletÂalpha cells and upregulated in type 2 diabetes. Biochemical and Biophysical Research Communications, 2021, 568, 158-166.	2.1	10
4	KATP channel blockers control glucagon secretion by distinct mechanisms: A direct stimulation of α-cells involving a [Ca2+]c rise and an indirect inhibition mediated by somatostatin. Molecular Metabolism, 2021, 53, 101268.	6.5	13
5	Inhibition of aquaporin-1 prevents myocardial remodeling by blocking the transmembrane transport of hydrogen peroxide. Science Translational Medicine, 2020, 12, .	12.4	39
6	SGLT2 is not expressed in pancreatic α- and β-cells, and its inhibition does not directly affect glucagon and insulin secretion in rodents and humans. Molecular Metabolism, 2020, 42, 101071.	6.5	26
7	The Role of α-Cells in Islet Function and Glucose Homeostasis in Health and Type 2 Diabetes. Journal of Molecular Biology, 2020, 432, 1367-1394.	4.2	53
8	γ-Hydroxybutyrate does not mediate glucose inhibition of glucagon secretion. Journal of Biological Chemistry, 2020, 295, 5419-5426.	3.4	2
9	Glucose Acutely Reduces Cytosolic and Mitochondrial H ₂ O ₂ in Rat Pancreatic Beta Cells. Antioxidants and Redox Signaling, 2019, 30, 297-313.	5.4	21
10	Metallothionein 1 negatively regulates glucose-stimulated insulin secretion and is differentially expressed in conditions of beta cell compensation and failure in mice and humans. Diabetologia, 2019, 62, 2273-2286.	6.3	16
11	Somatostatin Is Only Partly Required for the Glucagonostatic Effect of Glucose but Is Necessary for the Glucagonostatic Effect of KATP Channel Blockers. Diabetes, 2018, 67, 2239-2253.	0.6	33
12	Impaired Store-Operated Calcium Entry and STIM1 Loss Lead to Reduced Insulin Secretion and Increased Endoplasmic Reticulum Stress in the Diabetic Î ² -Cell. Diabetes, 2018, 67, 2293-2304.	0.6	47
13	Sodium-myoinositol cotransporter-1, SMIT1, mediates the production of reactive oxygen species induced by hyperglycemia in the heart. Scientific Reports, 2017, 7, 41166.	3.3	64
14	Steviol glycosides enhance pancreatic beta-cell function and taste sensation by potentiation of TRPM5 channel activity. Nature Communications, 2017, 8, 14733.	12.8	136
15	TALK-1 channels control β cell endoplasmic reticulum Ca ²⁺ homeostasis. Science Signaling, 2017, 10, .	3.6	27
16	Identification of islet-enriched long non-coding RNAs contributing to β-cell failure in type 2 diabetes. Molecular Metabolism, 2017, 6, 1407-1418.	6.5	57
17	How stable is repression of disallowed genes in pancreatic islets in response to metabolic stress?. PLoS ONE, 2017, 12, e0181651.	2.5	16
18	Inter-domain tagging implicates caveolin-1 in insulin receptor trafficking and Erk signaling bias in pancreatic beta-cells. Molecular Metabolism, 2016, 5, 366-378.	6.5	38

PATRICK GILON

#	Article	IF	CITATIONS
19	SERCA2 Deficiency Impairs Pancreatic β-Cell Function in Response to Diet-Induced Obesity. Diabetes, 2016, 65, 3039-3052.	0.6	65
20	Paracrine nitric oxide induces expression of cardiac sarcomeric proteins in adult progenitor cells through soluble guanylyl cyclase/cyclic-guanosine monophosphate and Wnt/β-catenin inhibition. Cardiovascular Research, 2016, 112, 478-490.	3.8	4
21	Cocaine- and amphetamine-regulated transcript: a novel regulator of energy homeostasis expressed in a subpopulation of pancreatic islet cells. Diabetologia, 2016, 59, 1855-1859.	6.3	8
22	Can Tea Extracts Exert a Protective Effect Against Diabetes by Reducing Oxidative Stress and Decreasing Glucotoxicity in Pancreatic β-Cells?. Diabetes and Metabolism Journal, 2015, 39, 27.	4.7	4
23	Physiological and Pathophysiological Control of Glucagon Glucagon Secretion by Pancreatic α-Cells. , 2015, , 175-247.		1
24	Pancreatic and Duodenal Homeobox Protein 1 (Pdx-1) Maintains Endoplasmic Reticulum Calcium Levels through Transcriptional Regulation of Sarco-endoplasmic Reticulum Calcium ATPase 2b (SERCA2b) in the Islet β Cell. Journal of Biological Chemistry, 2014, 289, 32798-32810.	3.4	41
25	Glucose regulation of glucagon secretion. Diabetes Research and Clinical Practice, 2014, 103, 1-10.	2.8	84
26	Calcium signaling in pancreatic β-cells in health and in Type 2 diabetes. Cell Calcium, 2014, 56, 340-361.	2.4	158
27	AMPK activation by glucagon-like peptide-1 prevents NADPH oxidase activation induced by hyperglycemia in adult cardiomyocytes. American Journal of Physiology - Heart and Circulatory Physiology, 2014, 307, H1120-H1133.	3.2	96
28	Physiological and Pathophysiological Control of Glucagon Secretion by Pancreatic α-Cells. , 2014, , 1-69.		2
29	In Situ Electrophysiological Examination of Pancreatic α Cells in the Streptozotocin-Induced Diabetes Model, Revealing the Cellular Basis of Glucagon Hypersecretion. Diabetes, 2013, 62, 519-530.	0.6	62
30	Frequency-dependent mitochondrial Ca2+ accumulation regulates ATP synthesis in pancreatic β cells. Pflugers Archiv European Journal of Physiology, 2013, 465, 543-554.	2.8	73
31	UCP2 Regulates the Glucagon Response to Fasting and Starvation. Diabetes, 2013, 62, 1623-1633.	0.6	62
32	Tolbutamide Controls Glucagon Release From Mouse Islets Differently Than Glucose. Diabetes, 2013, 62, 1612-1622.	0.6	78
33	The Mitochondrial Ca2+ Uniporter MCU Is Essential for Glucose-Induced ATP Increases in Pancreatic β-Cells. PLoS ONE, 2012, 7, e39722.	2.5	146
34	Tissue-specific disallowance of housekeeping genes: The other face of cell differentiation. Genome Research, 2011, 21, 95-105.	5.5	163
35	Mechanisms of Control of the Free Ca2+ Concentration in the Endoplasmic Reticulum of Mouse Pancreatic β-Cells. Diabetes, 2011, 60, 2533-2545.	0.6	85
36	Loss of high-frequency glucose-induced Ca ²⁺ oscillations in pancreatic islets correlates with impaired glucose tolerance in <i> Trpm5 ^{â^'/â''} </i> mice. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 5208-5213.	7.1	187

PATRICK GILON

#	Article	IF	CITATIONS
37	Glucose and Pharmacological Modulators of ATP-Sensitive K+ Channels Control [Ca2+]c by Different Mechanisms in Isolated Mouse α-Cells. Diabetes, 2009, 58, 412-421.	0.6	69
38	NALCN: a regulated leak channel. EMBO Reports, 2009, 10, 963-964.	4.5	18
39	The GluCreâ€ROSA26EYFP mouse: A new model for easy identification of living pancreatic αâ€cells. FEBS Letters, 2007, 581, 4235-4240.	2.8	77
40	Glucose-induced mixed [Ca ²⁺] _c oscillations in mouse β-cells are controlled by the membrane potential and the SERCA3 Ca ²⁺ -ATPase of the endoplasmic reticulum. American Journal of Physiology - Cell Physiology, 2006, 290, C1503-C1511.	4.6	102
41	Atypical Ca2+-induced Ca2+release from a sarco-endoplasmic reticulum Ca2+-ATPase 3-dependent Ca2+pool in mouse pancreatic β-cells. Journal of Physiology, 2004, 559, 141-156.	2.9	27
42	Control Mechanisms of the Oscillations of Insulin Secretion In Vitro and In Vivo. Diabetes, 2002, 51, S144-S151.	0.6	147
43	Feedback Control of the ATP-Sensitive K+ Current by Cytosolic Ca2+ Contributes to Oscillations of the Membrane Potential in Pancreatic Â-Cells. Diabetes, 2002, 51, 376-384.	0.6	49
44	Contribution of the endoplasmic reticulum to the glucose-induced [Ca ²⁺] _c response in mouse pancreatic islets. American Journal of Physiology - Endocrinology and Metabolism, 2002, 282, E982-E991.	3.5	44
45	SERCA3 Ablation Does Not Impair Insulin Secretion but Suggests Distinct Roles of Different Sarcoendoplasmic Reticulum Ca2+ Pumps for Ca2+ Homeostasis in Pancreatic Â-cells. Diabetes, 2002, 51, 3245-3253.	0.6	87
46	Mechanisms and Physiological Significance of the Cholinergic Control of Pancreatic β-Cell Function. Endocrine Reviews, 2001, 22, 565-604.	20.1	429
47	Uptake and Release of Ca2+ by the Endoplasmic Reticulum Contribute to the Oscillations of the Cytosolic Ca2+ Concentration Triggered by Ca2+ Influx in the Electrically Excitable Pancreatic B-cell. Journal of Biological Chemistry, 1999, 274, 20197-20205.	3.4	119
48	Influence of cell number on the characteristics and synchrony of Ca2+oscillations in clusters of mouse pancreatic islet cells. Journal of Physiology, 1999, 520, 839-849.	2.9	104
49	Okadaic acidâ€induced decrease in the magnitude and efficacy of the Ca 2+ signal in pancreatic β cells and inhibition of insulin secretion. British Journal of Pharmacology, 1998, 123, 97-105.	5.4	22
50	Interplay between cytoplasmic Ca2+ and the ATP/ADP ratio: a feedback control mechanism in mouse pancreatic islets. Biochemical Journal, 1998, 333, 269-274.	3.7	159
51	Emptying of Intracellular Ca2+Stores Stimulates Ca2+Entry in Mouse Pancreatic β-Cells by Both Direct and Indirect Mechanisms. Journal of Physiology, 1997, 503, 387-398.	2.9	79
52	Immunocytochemical localisation of GABA in endocrine cells of the rat entero-pancreatic system. Biology of the Cell, 1988, 62, 265-273.	2.0	24