
Ming-Shyue Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5212240/publications.pdf Version: 2024-02-01

MINC-SHVUELEE

#	Article	IF	CITATIONS
1	The central role of Sphingosine kinase 1 in the development of neuroendocrine prostate cancer (NEPC): A new targeted therapy of NEPC. Clinical and Translational Medicine, 2022, 12, e695.	4.0	8
2	Matriptase-2/NR4A3 axis switches TGF-β action toward suppression of prostate cancer cell invasion, tumor growth, and metastasis. Oncogene, 2022, 41, 2833-2845.	5.9	5
3	Afatinib Exerts Immunomodulatory Effects by Targeting the Pyrimidine Biosynthesis Enzyme CAD. Cancer Research, 2021, 81, 3270-3282.	0.9	16
4	Inhibition of TMPRSS2 by HAI-2 reduces prostate cancer cell invasion and metastasis. Oncogene, 2020, 39, 5950-5963.	5.9	31
5	Activation of sphingosine kinase by lipopolysaccharide promotes prostate cancer cell invasion and metastasis via SphK1/S1PR4/matriptase. Oncogene, 2019, 38, 5580-5598.	5.9	33
6	HAI-2 as a novel inhibitor of plasmin represses lung cancer cell invasion and metastasis. British Journal of Cancer, 2019, 120, 499-511.	6.4	12
7	Antibody-assisted target identification reveals afatinib, an ECFR covalent inhibitor, down-regulating ribonucleotide reductase. Oncotarget, 2018, 9, 21512-21529.	1.8	10
8	The Kunitz Domain I of Hepatocyte Growth Factor Activator Inhibitor-2 Inhibits Matriptase Activity and Invasive Ability of Human Prostate Cancer Cells. Scientific Reports, 2017, 7, 15101.	3.3	14
9	The Role and Mechanism of Epithelial-to-Mesenchymal Transition in Prostate Cancer Progression. International Journal of Molecular Sciences, 2017, 18, 2079.	4.1	92
10	Ketamine Increases Permeability and Alters Epithelial Phenotype of Renal Distal Tubular Cells via a GSKâ€3βâ€Đependent Mechanism. Journal of Cellular Biochemistry, 2016, 117, 881-893.	2.6	11
11	Natural Endogenous Human Matriptase and Prostasin Undergo Zymogen Activation via Independent Mechanisms in an Uncoupled Manner. PLoS ONE, 2016, 11, e0167894.	2.5	12
12	N-Glycan Branching Affects the Subcellular Distribution of and Inhibition of Matriptase by HAI-2/Placental Bikunin. PLoS ONE, 2015, 10, e0132163.	2.5	23
13	Androgen-Induced TMPRSS2 Activates Matriptase and Promotes Extracellular Matrix Degradation, Prostate Cancer Cell Invasion, Tumor Growth, and Metastasis. Cancer Research, 2015, 75, 2949-2960.	0.9	128
14	Lysophosphatidic acid induces reactive oxygen species generation by activating protein kinase C in PC-3 human prostate cancer cells. Biochemical and Biophysical Research Communications, 2013, 440, 564-569.	2.1	26
15	Curcumin-Targeting Pericellular Serine Protease Matriptase Role in Suppression of Prostate Cancer Cell Invasion, Tumor Growth, and Metastasis. Cancer Prevention Research, 2013, 6, 495-505.	1.5	43
16	Suppression of Free Fatty Acid-Induced Insulin Resistance by Phytopolyphenols in C2C12 Mouse Skeletal Muscle Cells. Journal of Agricultural and Food Chemistry, 2012, 60, 1059-1066.	5.2	85
17	Persistent elevation of hepatocyte growth factor activator inhibitors in cholangiopathies affects liver fibrosis and differentiation. Hepatology, 2012, 55, 161-172.	7.3	10
18	Matriptase is inhibited by extravascular antithrombin in epithelial cells but not in most carcinoma cells. American Journal of Physiology - Cell Physiology, 2011, 301, C1093-C1103.	4.6	8

MING-SHYUE LEE

#	Article	IF	CITATIONS
19	TMPRSS2, a Serine Protease Expressed in the Prostate on the Apical Surface of Luminal Epithelial Cells and Released into Semen in Prostasomes, Is Misregulated in Prostate Cancer Cells. American Journal of Pathology, 2010, 176, 2986-2996.	3.8	137
20	Matriptase Is Involved in ErbB-2-Induced Prostate Cancer Cell Invasion. American Journal of Pathology, 2010, 177, 3145-3158.	3.8	34
21	Polarized epithelial cells secrete matriptase as a consequence of zymogen activation and HAI-1-mediated inhibition. American Journal of Physiology - Cell Physiology, 2009, 297, C459-C470.	4.6	62
22	Revisiting histidine-dependent acid phosphatases: a distinct group of tyrosine phosphatases. Trends in Biochemical Sciences, 2009, 34, 273-278.	7.5	21
23	Purification from human milk of matriptase complexes with secreted serpins: mechanism for inhibition of matriptase other than HAI-1. American Journal of Physiology - Cell Physiology, 2008, 295, C423-C431.	4.6	41
24	Autoactivation of matriptase in vitro: requirement for biomembrane and LDL receptor domain. American Journal of Physiology - Cell Physiology, 2007, 293, C95-C105.	4.6	72
25	Matriptase activation and shedding with HAI-1 is induced by steroid sex hormones in human prostate cancer cells, but not in breast cancer cells. American Journal of Physiology - Cell Physiology, 2006, 291, C40-C49.	4.6	51
26	Expression of p66Shc protein correlates with proliferation of human prostate cancer cells. Oncogene, 2005, 24, 7203-7212.	5.9	55
27	HAI-1 regulates activation and expression of matriptase, a membrane-bound serine protease. American Journal of Physiology - Cell Physiology, 2005, 289, C462-C470.	4.6	133
28	Simultaneous activation and hepatocyte growth factor activator inhibitor 1-mediated inhibition of matriptase induced at activation foci in human mammary epithelial cells. American Journal of Physiology - Cell Physiology, 2005, 288, C932-C941.	4.6	74
29	Tyrosine-317 of p52Shc mediates androgen-stimulated proliferation signals in human prostate cancer cells. Oncogene, 2004, 23, 3048-3058.	5.9	25
30	p66Shc protein is upregulated by steroid hormones in hormone-sensitive cancer cells and in primary prostate carcinomas. International Journal of Cancer, 2004, 108, 672-678.	5.1	44
31	ERK inhibitor PD98059 enhances docetaxel-induced apoptosis of androgen-independent human prostate cancer cells. International Journal of Cancer, 2003, 107, 478-485.	5.1	128
32	ErbB-2 signaling is involved in regulating PSA secretion in androgen-independent human prostate cancer LNCaP C-81 cells. Oncogene, 2003, 22, 781-796.	5.9	55
33	Establishment and characterization of androgen-independent human prostate cancer LNCaP cell model. Prostate, 2002, 50, 222-235.	2.3	166
34	DECREASED EXPRESSION OF CELLULAR PROSTATIC ACID PHOSPHATASE INCREASES TUMORIGENICITY OF HUMAN PROSTATE CANCER CELLS. Journal of Urology, 2001, 166, 1943-1950.	0.4	66
35	Characterization of a Prostate-specific Tyrosine Phosphatase by Mutagenesis and Expression in Human Prostate Cancer Cells. Journal of Biological Chemistry, 2001, 276, 2544-2550.	3.4	34
36	DIFFERENTIAL RESPONSIVENESS OF PROSTATIC ACID PHOSPHATASE AND PROSTATE-SPECIFIC ANTIGEN mRNA TO ANDROGEN IN PROSTATE CANCER CELLS. Cell Biology International, 2000, 24, 681-689.	3.0	27

#	Article	IF	CITATIONS
37	Interaction between protein tyrosine phosphatase and protein tyrosine kinase is involved in androgen-promoted growth of human prostate cancer cells. Oncogene, 2000, 19, 2664-2677.	5.9	66
38	Genomic structure of carp mitogen-activated protein kinase kinase 1 gene. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1996, 1306, 133-136.	2.4	4
39	Molecular cloning and sequencing of a carp cDNA encoding mitogen-activated protein kinase kinase. Biochimica Et Biophysica Acta - Molecular Cell Research, 1994, 1220, 223-225.	4.1	6