

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5212012/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Energyâ€Level Modulation of Smallâ€Molecule Electron Acceptors to Achieve over 12% Efficiency in Polymer Solar Cells. Advanced Materials, 2016, 28, 9423-9429.	11.1	1,307
2	Molecular Design of Benzodithiophene-Based Organic Photovoltaic Materials. Chemical Reviews, 2016, 116, 7397-7457.	23.0	998
3	Alkyl Chain Tuning of Small Molecule Acceptors for Efficient Organic Solar Cells. Joule, 2019, 3, 3020-3033.	11.7	763
4	Molecular Design toward Highly Efficient Photovoltaic Polymers Based on Two-Dimensional Conjugated Benzodithiophene. Accounts of Chemical Research, 2014, 47, 1595-1603.	7.6	667
5	Design, Application, and Morphology Study of a New Photovoltaic Polymer with Strong Aggregation in Solution State. Macromolecules, 2012, 45, 9611-9617.	2.2	664
6	A Wide Band Gap Polymer with a Deep Highest Occupied Molecular Orbital Level Enables 14.2% Efficiency in Polymer Solar Cells. Journal of the American Chemical Society, 2018, 140, 7159-7167.	6.6	654
7	Quantitative relations between interaction parameter, miscibility and function in organic solar cells. Nature Materials, 2018, 17, 253-260.	13.3	556
8	Highly Efficient 2D-Conjugated Benzodithiophene-Based Photovoltaic Polymer with Linear Alkylthio Side Chain. Chemistry of Materials, 2014, 26, 3603-3605.	3.2	531
9	A Potential Perylene Diimide Dimerâ€Based Acceptor Material for Highly Efficient Solutionâ€Processed Nonâ€Fullerene Organic Solar Cells with 4.03% Efficiency. Advanced Materials, 2013, 25, 5791-5797.	11.1	444
10	Achieving Highly Efficient Nonfullerene Organic Solar Cells with Improved Intermolecular Interaction and Openâ€Circuit Voltage. Advanced Materials, 2017, 29, 1700254.	11.1	363
11	A Highâ€Efficiency Organic Solar Cell Enabled by the Strong Intramolecular Electron Push–Pull Effect of the Nonfullerene Acceptor. Advanced Materials, 2018, 30, e1707170.	11.1	351
12	Realizing over 10% efficiency in polymer solar cell by device optimization. Science China Chemistry, 2015, 58, 248-256.	4.2	311
13	9.73% Efficiency Nonfullerene All Organic Small Molecule Solar Cells with Absorption-Complementary Donor and Acceptor. Journal of the American Chemical Society, 2017, 139, 5085-5094.	6.6	303
14	Bay-linked perylene bisimides as promising non-fullerene acceptors for organic solar cells. Chemical Communications, 2014, 50, 1024-1026.	2.2	290
15	From Binary to Ternary Solvent: Morphology Fineâ€ŧuning of D/A Blends in PDPP3Tâ€based Polymer Solar Cells. Advanced Materials, 2012, 24, 6335-6341.	11.1	288
16	Breaking the 10% Efficiency Barrier in Organic Photovoltaics: Morphology and Device Optimization of Wellâ€Known PBDTTT Polymers. Advanced Energy Materials, 2016, 6, 1502529.	10.2	285
17	PBDB-T and its derivatives: A family of polymer donors enables over 17% efficiency in organic photovoltaics. Materials Today, 2020, 35, 115-130.	8.3	269
18	Manipulating Aggregation and Molecular Orientation in Allâ€Polymer Photovoltaic Cells. Advanced Materials, 2015, 27, 6046-6054.	11.1	264

#	Article	IF	CITATIONS
19	Side Chain Selection for Designing Highly Efficient Photovoltaic Polymers with 2D-Conjugated Structure. Macromolecules, 2014, 47, 4653-4659.	2.2	259
20	Green-solvent-processable organic solar cells. Materials Today, 2016, 19, 533-543.	8.3	252
21	Controlling Blend Morphology for Ultrahigh Current Density in Nonfullerene Acceptor-Based Organic Solar Cells. ACS Energy Letters, 2018, 3, 669-676.	8.8	242
22	Highâ€Efficiency Nonfullerene Organic Solar Cells: Critical Factors that Affect Complex Multiâ€Length Scale Morphology and Device Performance. Advanced Energy Materials, 2017, 7, 1602000.	10.2	232
23	Binary additives synergistically boost the efficiency of all-polymer solar cells up to 3.45%. Energy and Environmental Science, 2014, 7, 1351-1356.	15.6	224
24	Design of a New Smallâ€Molecule Electron Acceptor Enables Efficient Polymer Solar Cells with High Fill Factor. Advanced Materials, 2017, 29, 1704051.	11.1	224
25	Miscibility–Function Relations in Organic Solar Cells: Significance of Optimal Miscibility in Relation to Percolation. Advanced Energy Materials, 2018, 8, 1703058.	10.2	223
26	Remove the Residual Additives toward Enhanced Efficiency with Higher Reproducibility in Polymer Solar Cells. Journal of Physical Chemistry C, 2013, 117, 14920-14928.	1.5	210
27	Enhanced Photovoltaic Performance by Modulating Surface Composition in Bulk Heterojunction Polymer Solar Cells Based on PBDTTTâ€Câ€T/PC ₇₁ BM. Advanced Materials, 2014, 26, 4043-4049.	11.1	203
28	A Printable Organic Cathode Interlayer Enables over 13% Efficiency for 1-cm2 Organic Solar Cells. Joule, 2019, 3, 227-239.	11.7	193
29	Significant Influence of the Methoxyl Substitution Position on Optoelectronic Properties and Molecular Packing of Smallâ€Molecule Electron Acceptors for Photovoltaic Cells. Advanced Energy Materials, 2017, 7, 1700183.	10.2	184
30	A Narrowâ€Bandgap nâ€Type Polymer with an Acceptor–Acceptor Backbone Enabling Efficient Allâ€Polymer Solar Cells. Advanced Materials, 2020, 32, e2004183.	11.1	184
31	Quenching to the Percolation Threshold in Organic Solar Cells. Joule, 2019, 3, 443-458.	11.7	183
32	Molecular design of a non-fullerene acceptor enables a P3HT-based organic solar cell with 9.46% efficiency. Energy and Environmental Science, 2020, 13, 2864-2869.	15.6	158
33	Greenâ€Solventâ€Processed Allâ€Polymer Solar Cells Containing a Perylene Diimideâ€Based Acceptor with an Efficiency over 6.5%. Advanced Energy Materials, 2016, 6, 1501991.	10.2	157
34	Application of Two-Dimensional Conjugated Benzo[1,2- <i>b</i> :4,5- <i>b</i> ′]dithiophene in Quinoxaline-Based Photovoltaic Polymers. Macromolecules, 2012, 45, 3032-3038.	2.2	154
35	Highâ€Efficiency Allâ€&mallâ€Molecule Organic Solar Cells Based on an Organic Molecule Donor with Alkylsilylâ€Thienyl Conjugated Side Chains. Advanced Materials, 2018, 30, e1706361.	11.1	154
36	Surpassing 10% Efficiency Benchmark for Nonfullerene Organic Solar Cells by Scalable Coating in Air from Single Nonhalogenated Solvent. Advanced Materials, 2018, 30, 1705485.	11.1	150

#	Article	IF	CITATIONS
37	Achieving high efficiency and well-kept ductility in ternary all-polymer organic photovoltaic blends thanks to two well miscible donors. Matter, 2022, 5, 725-734.	5.0	145
38	Tuning the Hybridization of Local Exciton and Chargeâ€Transfer States in Highly Efficient Organic Photovoltaic Cells. Angewandte Chemie - International Edition, 2020, 59, 9004-9010.	7.2	144
39	A multi-objective optimization-based layer-by-layer blade-coating approach for organic solar cells: rational control of vertical stratification for high performance. Energy and Environmental Science, 2019, 12, 3118-3132.	15.6	142
40	Optimized Active Layer Morphologies via Ternary Copolymerization of Polymer Donors for 17.6 % Efficiency Organic Solar Cells with Enhanced Fill Factor. Angewandte Chemie - International Edition, 2021, 60, 2322-2329.	7.2	138
41	Optimization Requirements of Efficient Polythiophene:Nonfullerene Organic Solar Cells. Joule, 2020, 4, 1278-1295.	11.7	133
42	Sequential Deposition of Organic Films with Ecoâ€Compatible Solvents Improves Performance and Enables Over 12%â€Efficiency Nonfullerene Solar Cells. Advanced Materials, 2019, 31, e1808153.	11.1	132
43	Rational Strategy to Stabilize an Unstable Highâ€Efficiency Binary Nonfullerene Organic Solar Cells with a Third Component. Advanced Energy Materials, 2019, 9, 1900376.	10.2	132
44	Highly Efficient Tandem Polymer Solar Cells with a Photovoltaic Response in the Visible Light Range. Advanced Materials, 2015, 27, 1189-1194.	11.1	130
45	Conjugated and Nonconjugated Substitution Effect on Photovoltaic Properties of Benzodifuran-Based Photovoltaic Polymers. Macromolecules, 2012, 45, 6923-6929.	2.2	129
46	Non-fullerene acceptor organic photovoltaics with intrinsic operational lifetimes over 30 years. Nature Communications, 2021, 12, 5419.	5.8	128
47	Quantification of Nano―and Mesoscale Phase Separation and Relation to Donor and Acceptor Quantum Efficiency, <i>J</i> _{sc} , and FF in Polymer:Fullerene Solar Cells. Advanced Materials, 2014, 26, 4234-4241.	11.1	127
48	Quantitative Morphology–Performance Correlations in Organic Solar Cells: Insights from Soft Xâ€Ray Scattering. Advanced Energy Materials, 2017, 7, 1700084.	10.2	123
49	Understanding, quantifying, and controlling the molecular ordering of semiconducting polymers: from novices to experts and amorphous to perfect crystals. Materials Horizons, 2022, 9, 577-606.	6.4	117
50	Enhanced Efficiency in Fullerene-Free Polymer Solar Cell by Incorporating Fine-designed Donor and Acceptor Materials. ACS Applied Materials & Interfaces, 2015, 7, 9274-9280.	4.0	110
51	Highly Efficient Photovoltaic Polymers Based on Benzodithiophene and Quinoxaline with Deeper HOMO Levels. Macromolecules, 2015, 48, 5172-5178.	2.2	104
52	Enhanced Photovoltaic Performance of Diketopyrrolopyrrole (DPP)-Based Polymers with Extended π Conjugation. Journal of Physical Chemistry C, 2013, 117, 9550-9557.	1.5	103
53	Effect of Alkylsilyl Sideâ€Chain Structure on Photovoltaic Properties of Conjugated Polymer Donors. Advanced Energy Materials, 2018, 8, 1702324.	10.2	102
54	Thermoplastic Elastomer Tunes Phase Structure and Promotes Stretchability of Highâ€Efficiency Organic Solar Cells. Advanced Materials, 2021, 33, e2106732.	11.1	101

#	Article	IF	CITATIONS
55	Precise Manipulation of Multilength Scale Morphology and Its Influence on Ecoâ€Friendly Printed Allâ€Polymer Solar Cells. Advanced Functional Materials, 2017, 27, 1702016.	7.8	99
56	A universal halogen-free solvent system for highly efficient polymer solar cells. Journal of Materials Chemistry A, 2015, 3, 12723-12729.	5.2	97
57	Challenges and recent advances in photodiodes-based organic photodetectors. Materials Today, 2021, 51, 475-503.	8.3	94
58	Modulation of Morphological, Mechanical, and Photovoltaic Properties of Ternary Organic Photovoltaic Blends for Optimum Operation. Advanced Energy Materials, 2021, 11, 2003506.	10.2	92
59	High Performance Organic Solar Cells Processed by Blade Coating in Air from a Benign Food Additive Solution. Chemistry of Materials, 2016, 28, 7451-7458.	3.2	91
60	Highâ€Efficiency Polymer Solar Cells Enabled by Environmentâ€Friendly Singleâ€Solvent Processing. Advanced Energy Materials, 2016, 6, 1502177.	10.2	91
61	The Importance of Entanglements in Optimizing the Mechanical and Electrical Performance of All-Polymer Solar Cells. Chemistry of Materials, 2019, 31, 5124-5132.	3.2	88
62	Manipulation of Domain Purity and Orientational Ordering in High Performance All-Polymer Solar Cells. Chemistry of Materials, 2016, 28, 6178-6185.	3.2	87
63	Panchromatic Sequentially Cast Ternary Polymer Solar Cells. Advanced Materials, 2017, 29, 1604603.	11.1	87
64	Molecular Design toward Efficient Polymer Solar Cells with High Polymer Content. Journal of the American Chemical Society, 2013, 135, 8464-8467.	6.6	86
65	Impact of Molecular Weight on the Mechanical and Electrical Properties of a High-Mobility Diketopyrrolopyrrole-Based Conjugated Polymer. Macromolecules, 2020, 53, 4490-4500.	2.2	85
66	Molecular Engineering and Morphology Control of Polythiophene:Nonfullerene Acceptor Blends for Highâ€Performance Solar Cells. Advanced Energy Materials, 2020, 10, 2002572.	10.2	83
67	Miscibility ontrolled Phase Separation in Double able Conjugated Polymers for Single omponent Organic Solar Cells with Efficiencies over 8 %. Angewandte Chemie - International Edition, 2020, 59, 21683-21692.	7.2	82
68	Highly Efficient, Stable, and Ductile Ternary Nonfullerene Organic Solar Cells from a Twoâ€Đonor Polymer Blend. Advanced Materials, 2019, 31, e1808279.	11.1	79
69	Selecting a Donor Polymer for Realizing Favorable Morphology in Efficient Nonâ€fullerene Acceptorâ€based Solar Cells. Small, 2014, 10, 4658-4663.	5.2	76
70	Asymmetrically noncovalently fused-ring acceptor for high-efficiency organic solar cells with reduced voltage loss and excellent thermal stability. Nano Energy, 2020, 74, 104861.	8.2	75
71	Long-Lived, Non-Geminate, Radiative Recombination of Photogenerated Charges in a Polymer/Small-Molecule Acceptor Photovoltaic Blend. Journal of the American Chemical Society, 2018, 140, 9996-10008.	6.6	73
72	Reduced Nonradiative Energy Loss Caused by Aggregation of Nonfullerene Acceptor in Organic Solar Cells. Advanced Energy Materials, 2019, 9, 1901823.	10.2	72

#	Article	IF	CITATIONS
73	2D-Conjugated Benzodithiophene-Based Polymer Acceptor: Design, Synthesis, Nanomorphology, and Photovoltaic Performance. Macromolecules, 2015, 48, 7156-7163.	2.2	70
74	Ultrathin Polyaniline-based Buffer Layer for Highly Efficient Polymer Solar Cells with Wide Applicability. Scientific Reports, 2014, 4, 6570.	1.6	69
75	The renaissance of polythiophene organic solar cells. Trends in Chemistry, 2021, 3, 1074-1087.	4.4	64
76	Molecular energy level modulation by changing the position of electron-donating side groups. Journal of Materials Chemistry, 2012, 22, 5700.	6.7	63
77	Application of Bis-PCBM in Polymer Solar Cells with Improved Voltage. Journal of Physical Chemistry C, 2013, 117, 25360-25366.	1.5	61
78	Enhanced efficiency of polymer photovoltaic cells via the incorporation of a water-soluble naphthalene diimide derivative as a cathode interlayer. Journal of Materials Chemistry C, 2015, 3, 9565-9571.	2.7	60
79	Influence of Donor Polymer on the Molecular Ordering of Small Molecular Acceptors in Nonfullerene Polymer Solar Cells. Advanced Energy Materials, 2018, 8, 1701674.	10.2	60
80	Control of aggregated structure of photovoltaic polymers for highâ€efficiency solar cells. Aggregate, 2021, 2, e46.	5.2	60
81	Impact of Electrostatic Interaction on Bulk Morphology in Efficient Donor–Acceptor Photovoltaic Blends. Angewandte Chemie - International Edition, 2021, 60, 15988-15994.	7.2	60
82	Control of Mesoscale Morphology and Photovoltaic Performance in Diketopyrrolopyrroleâ€Based Small Band Gap Terpolymers. Advanced Energy Materials, 2017, 7, 1601138.	10.2	59
83	Morphology control in <scp>highâ€efficiency allâ€polymer</scp> solar cells. InformaÄnÃ-Materiály, 2022, 4, .	8.5	59
84	Supervisory and coworker support for safety: Buffers between job insecurity and safety performance of high-speed railway drivers in China. Safety Science, 2019, 117, 290-298.	2.6	56
85	Revealing the Impact of F4â€TCNQ as Additive on Morphology and Performance of Highâ€Efficiency Nonfullerene Organic Solar Cells. Advanced Functional Materials, 2019, 29, 1806262.	7.8	55
86	Quadrupole Moment Induced Morphology Control Via a Highly Volatile Small Molecule in Efficient Organic Solar Cells. Advanced Functional Materials, 2021, 31, 2010535.	7.8	55
87	Molecular Design and Application of a Photovoltaic Polymer with Improved Optical Properties and Molecular Energy Levels. Macromolecules, 2015, 48, 3493-3499.	2.2	52
88	Significance of thermodynamic interaction parameters in guiding the optimization of polymer:nonfullerene solar cells. Chemical Communications, 2020, 56, 12463-12478.	2.2	52
89	lsomeryâ€Dependent Miscibility Enables Highâ€Performance Allâ€Smallâ€Molecule Solar Cells. Small, 2019, 15, 1804271	5.2	50
90	A polymer design strategy toward green solvent processed efficient non-fullerene polymer solar cells. Journal of Materials Chemistry A, 2018, 6, 4324-4330.	5.2	48

#	Article	IF	CITATIONS
91	3,4â€Dicyanothiophene—a Versatile Building Block for Efficient Nonfullerene Polymer Solar Cells. Advanced Energy Materials, 2020, 10, 1904247.	10.2	48
92	Carboxylate substituted pyrazine: A simple and low-cost building block for novel wide bandgap polymer donor enables 15.3% efficiency in organic solar cells. Nano Energy, 2021, 82, 105679.	8.2	48
93	Synergistically minimized nonradiative energy loss and optimized morphology achieved via the incorporation of small molecule donor in 17.7% efficiency ternary polymer solar cells. Nano Energy, 2021, 85, 105963.	8.2	47
94	Unraveling the Correlations between Mechanical Properties, Miscibility, and Film Microstructure in Allâ€Polymer Photovoltaic Cells. Advanced Functional Materials, 2022, 32, .	7.8	47
95	A regioregular conjugated polymer for high performance thick-film organic solar cells without processing additive. Journal of Materials Chemistry A, 2017, 5, 10517-10525.	5.2	46
96	Benzodifuran-alt-thienothiophene based low band gap copolymers: substituent effects on their molecular energy levels and photovoltaic properties. Polymer Chemistry, 2013, 4, 3047.	1.9	45
97	Molecular design strategies for voltage modulation in highly efficient polymer solar cells. Polymer International, 2015, 64, 957-962.	1.6	45
98	Polymer Side-Chain Variation Induces Microstructural Disparity in Nonfullerene Solar Cells. Chemistry of Materials, 2019, 31, 6568-6577.	3.2	45
99	Delicate crystallinity control enables high-efficiency P3HT organic photovoltaic cells. Journal of Materials Chemistry A, 2022, 10, 3418-3429.	5.2	45
100	Competition between morphological attributes in the thermal annealing and additive processing of polymer solar cells. Journal of Materials Chemistry C, 2013, 1, 5023.	2.7	44
101	Comparing non-fullerene acceptors with fullerene in polymer solar cells: a case study with FTAZ and PyCNTAZ. Journal of Materials Chemistry A, 2017, 5, 4886-4893.	5.2	44
102	Openâ€Circuit Voltage Loss in Lead Chalcogenide Quantum Dot Solar Cells. Advanced Materials, 2021, 33, e2008115.	11.1	44
103	Dialkylthio Substitution: An Effective Method to Modulate the Molecular Energy Levels of 2D-BDT Photovoltaic Polymers. ACS Applied Materials & Interfaces, 2016, 8, 3575-3583.	4.0	43
104	Calculation aided miscibility manipulation enables highly efficient polythiophene:nonfullerene photovoltaic cells. Science China Chemistry, 2021, 64, 478-487.	4.2	43
105	2D covalent organic framework thin films <i>via</i> interfacial self-polycondensation of an A ₂ B ₂ type monomer. Chemical Communications, 2020, 56, 3253-3256.	2.2	43
106	Unraveling the Molar Mass Dependence of Shearingâ€induced Aggregation Structure of a Highâ€Mobility Polymer Semiconductor. Advanced Materials, 2022, 34, e2108255.	11.1	43
107	Morphology control enables thickness-insensitive efficient nonfullerene polymer solar cells. Materials Chemistry Frontiers, 2017, 1, 2057-2064.	3.2	42
108	Perovskite-polymer hybrid solar cells with near-infrared external quantum efficiency over 40%. Science China Materials, 2015, 58, 953-960.	3.5	41

#	Article	IF	CITATIONS
109	Toward efficient non-fullerene polymer solar cells: Selection of donor polymers. Organic Electronics, 2015, 17, 295-303.	1.4	41
110	Role of Polymer Segregation on the Mechanical Behavior of All-Polymer Solar Cell Active Layers. ACS Applied Materials & Interfaces, 2017, 9, 43886-43892.	4.0	40
111	Measuring Temperature-Dependent Miscibility for Polymer Solar Cell Blends: An Easily Accessible Optical Method Reveals Complex Behavior. Chemistry of Materials, 2018, 30, 3943-3951.	3.2	38
112	A general enlarging shear impulse approach to green printing large-area and efficient organic photovoltaics. Energy and Environmental Science, 2022, 15, 2130-2138.	15.6	38
113	Thermally stable poly(3â€hexylthiophene): Nonfullerene solar cells with efficiency breaking 10%. Aggregate, 2022, 3, .	5.2	38
114	Optimization of side chains in alkylthiothiophene-substituted benzo[1,2-b:4,5-b′]dithiophene-based photovoltaic polymers. Polymer Chemistry, 2015, 6, 2752-2760.	1.9	37
115	"Twisted―conjugated molecules as donor materials for efficient all-small-molecule organic solar cells processed with tetrahydrofuran. Journal of Materials Chemistry A, 2019, 7, 23008-23018.	5.2	37
116	Novel Bimodal Silver Nanowire Network as Top Electrodes for Reproducible and Highâ€Efficiency Semitransparent Organic Photovoltaics. Solar Rrl, 2020, 4, 2000328.	3.1	36
117	Recent advances in the development of radiative sky cooling inspired from solar thermal harvesting. Nano Energy, 2021, 81, 105611.	8.2	36
118	Highâ€₽erformance Wide Bandgap Copolymers Using an EDOT Modified Benzodithiophene Donor Block with 10.11% Efficiency. Advanced Energy Materials, 2018, 8, 1602773.	10.2	35
119	Investigations of the Conjugated Polymers Based on Dithienogermole (DTG) Units for Photovoltaic Applications. Macromolecules, 2014, 47, 5558-5565.	2.2	34
120	Reduced Energy Loss in Non-Fullerene Organic Solar Cells with Isomeric Donor Polymers Containing Thiazole π-Spacers. ACS Applied Materials & Interfaces, 2020, 12, 753-762.	4.0	34
121	Environmentally-friendly solvent processed fullerene-free organic solar cells enabled by screening halogen-free solvent additives. Science China Materials, 2017, 60, 697-706.	3.5	33
122	Simple Polythiophene Solar Cells Approaching 10% Efficiency via Carbon Chain Length Modulation of Poly(3-alkylthiophene). Macromolecules, 2022, 55, 133-145.	2.2	33
123	Low-cost and high-performance poly(thienylene vinylene) derivative donor for efficient versatile organic photovoltaic cells. Nano Energy, 2022, 100, 107463.	8.2	33
124	Toward reliable and accurate evaluation of polymer solar cells based on low band gap polymers. Journal of Materials Chemistry C, 2015, 3, 564-569.	2.7	32
125	Black phosphorus nanoflakes as morphology modifier for efficient fullerene-free organic solar cells with high fill-factor and better morphological stability. Nano Research, 2019, 12, 777-783.	5.8	31
126	Revealing the Sideâ€Chainâ€Dependent Ordering Transition of Highly Crystalline Doubleâ€Cable Conjugated Polymers. Angewandte Chemie - International Edition, 2021, 60, 25499-25507.	7.2	31

#	Article	IF	CITATIONS
127	Tuning the molar mass of P3HT <i>via</i> direct arylation polycondensation yields optimal interaction and high efficiency in nonfullerene organic solar cells. Journal of Materials Chemistry A, 2021, 9, 19874-19885.	5.2	31
128	Advances and prospective in thermally stable nonfullerene polymer solar cells. Science China Chemistry, 2021, 64, 1875-1887.	4.2	31
129	Printable and stable all-polymer solar cells based on non-conjugated polymer acceptors with excellent mechanical robustness. Science China Chemistry, 2022, 65, 182-189.	4.2	31
130	An Easily Accessible Cathode Buffer Layer for Achieving Multiple High Performance Polymer Photovoltaic Cells. Journal of Physical Chemistry C, 2015, 119, 27322-27329.	1.5	30
131	Sequential deposition enables high-performance nonfullerene organic solar cells. Materials Chemistry Frontiers, 2021, 5, 4851-4873.	3.2	28
132	Direct Arylation Polycondensation of Chlorinated Thiophene Derivatives to High-Mobility Conjugated Polymers. Macromolecules, 2020, 53, 10147-10154.	2.2	27
133	Role of Secondary Thermal Relaxations in Conjugated Polymer Film Toughness. Chemistry of Materials, 2020, 32, 6540-6549.	3.2	27
134	Miscibility Control by Tuning Electrostatic Interactions in Bulk Heterojunction for Efficient Organic Solar Cells. , 2021, 3, 1276-1283.		26
135	A Mixed-Ligand Strategy to Modulate P3HT Regioregularity for High-Efficiency Solar Cells. Macromolecules, 2022, 55, 3078-3086.	2.2	26
136	Enhanced efficiency in nonfullerene organic solar cells by tuning molecular order and domain characteristics. Nano Energy, 2020, 77, 105310.	8.2	25
137	An In Situ Film-to-Film Transformation Approach toward Highly Crystalline Covalent Organic Framework Films. CCS Chemistry, 2022, 4, 1519-1525.	4.6	25
138	Tuning the Hybridization of Local Exciton and Chargeâ€Transfer States in Highly Efficient Organic Photovoltaic Cells. Angewandte Chemie, 2020, 132, 9089-9095.	1.6	24
139	Ternary copolymers containing 3,4-dicyanothiophene for efficient organic solar cells with reduced energy loss. Journal of Materials Chemistry A, 2021, 9, 13522-13530.	5.2	23
140	Efficient Organic Ternary Solar Cells Employing Narrow Band Gap Diketopyrrolopyrrole Polymers and Nonfullerene Acceptors. Chemistry of Materials, 2020, 32, 7309-7317.	3.2	22
141	Influence of the alkyl substitution position on photovoltaic properties of 2D-BDT-based conjugated polymers. Science China Materials, 2015, 58, 213-222.	3.5	21
142	Efficient Thick-Film Polymer Solar Cells with Enhanced Fill Factors via Increased Fullerene Loading. ACS Applied Materials & Interfaces, 2019, 11, 10794-10800.	4.0	21
143	Optimized Active Layer Morphologies via Ternary Copolymerization of Polymer Donors for 17.6 % Efficiency Organic Solar Cells with Enhanced Fill Factor. Angewandte Chemie, 2021, 133, 2352-2359.	1.6	21
144	High <i>T</i> _g Polymer Insulator Yields Organic Photovoltaic Blends with Superior Thermal Stability at 150 <scp>^oC</scp> . Chinese Journal of Chemistry, 2021, 39, 2570-2578.	2.6	20

#	Article	IF	CITATIONS
145	Identification of the histone lysine demethylase KDM4A/JMJD2A as a novel epigenetic target in M1 macrophage polarization induced by oxidized LDL. Oncotarget, 2017, 8, 114442-114456.	0.8	20
146	Towards a bright future: The versatile applications of organic solar cells. Materials Reports Energy, 2021, 1, 100062.	1.7	20
147	Morphology evolution with polymer chain propagation and its impacts on device performance and stability of non-fullerene solar cells. Journal of Materials Chemistry A, 2021, 9, 556-565.	5.2	19
148	Low-bandgap conjugated polymers based on benzodipyrrolidone with reliable unipolar electron mobility exceeding 1 cm2 Vâ~1 sâ~1. Science China Chemistry, 2021, 64, 1219-1227.	4.2	19
149	Miscibilityâ€Controlled Phase Separation in Doubleâ€Cable Conjugated Polymers for Singleâ€Component Organic Solar Cells with Efficiencies over 8 %. Angewandte Chemie, 2020, 132, 21867-21876.	1.6	18
150	The rise of polythiophene photovoltaics. Joule, 2022, 6, 941-944.	11.7	18
151	Enhanced JSC of P3HT-based non-fullerene polymer solar cells by modulating aggregation effect of P3HT in solution state. Organic Electronics, 2019, 68, 15-21.	1.4	17
152	High-Performance All-Polymer Solar Cells and Photodetectors Enabled by a High-Mobility n-Type Polymer and Optimized Bulk-Heterojunction Morphology. Chemistry of Materials, 2021, 33, 3746-3756.	3.2	17
153	An Aggregationâ€5uppressed Polymer Blending Strategy Enables Highâ€Performance Organic and Quantum Dot Hybrid Solar Cells. Small, 2022, 18, e2201387.	5.2	17
154	TCNQ as a volatilizable morphology modulator enables enhanced performance in non-fullerene organic solar cells. Journal of Materials Chemistry C, 2020, 8, 44-49.	2.7	16
155	P3HT-Based Organic Solar Cells with a Photoresponse to 1000 nm Enabled by Narrow Band Gap Nonfullerene Acceptors with High HOMO Levels. ACS Applied Materials & Interfaces, 2021, 13, 61487-61495.	4.0	16
156	Resolving the Molecular Origin of Mechanical Relaxations in Donor–Acceptor Polymer Semiconductors. Advanced Functional Materials, 2022, 32, 2105597.	7.8	15
157	Improving the open-circuit voltage of alkylthio-substituted photovoltaic polymers via post-oxidation. Organic Electronics, 2016, 28, 39-46.	1.4	14
158	Simultaneously Enhanced Efficiency and Mechanical Durability in Ternary Solar Cells Enabled by Low ost Incompletely Separated Fullerenes. Macromolecular Rapid Communications, 2022, 43, e2200139.	2.0	14
159	Novel Third Components with (Thio)barbituric Acid as the End Groups Improving the Efficiency of Ternary Solar Cells. ACS Applied Materials & Interfaces, 2022, 14, 23701-23708.	4.0	13
160	Multi-length scale morphology of nonfullerene all-small molecule blends and its relation to device function in organic solar cells. Materials Chemistry Frontiers, 2019, 3, 137-144.	3.2	12
161	The crucial role of end group planarity for fused-ring electron acceptors in organic solar cells. Materials Chemistry Frontiers, 2019, 3, 1642-1652.	3.2	12
162	Ecoâ€friendly solution processing of allâ€polymer solar cells: Recent advances and future perspective. Journal of Polymer Science, 2022, 60, 945-960.	2.0	12

#	Article	IF	CITATIONS
163	Effectively Improving Extinction Coefficient of Benzodithiophene and Benzodithiophenedioneâ€based Photovoltaic Polymer by Grafting Alkylthio Functional Groups. Chemistry - an Asian Journal, 2016, 11, 2650-2655.	1.7	11
164	Precise Characterization of Performance Metrics of Organic Solar Cells. Small Methods, 2017, 1, 1700159.	4.6	11
165	Conjugationâ€Curtailing of Benzodithionopyranâ€Cored Molecular Acceptor Enables Efficient Airâ€Processed Small Molecule Solar Cells. Small, 2019, 15, e1902656.	5.2	11
166	Impact of Electrostatic Interaction on Bulk Morphology in Efficient Donor–Acceptor Photovoltaic Blends. Angewandte Chemie, 2021, 133, 16124-16130.	1.6	11
167	Remove the water-induced traps toward improved performance in organic solar cells. Science China Materials, 2021, 64, 2629-2644.	3.5	11
168	Modulation of Building Block Size in Conjugated Polymers with D–A Structure for Polymer Solar Cells. Macromolecules, 2019, 52, 7929-7938.	2.2	10
169	Effects of personality on job burnout and safety performance of high-speed rail drivers in China: the mediator of organizational identification. Journal of Transportation Safety and Security, 2021, 13, 695-713.	1.1	9
170	Soft X-Ray Scattering Characterization of Polymer Semiconductors. , 2019, , 427-458.		9
171	Understanding the molecular mechanisms of the differences in the efficiency and stability of all-polymer solar cells. Journal of Materials Chemistry C, 2022, 10, 1850-1861.	2.7	9
172	Reproducibility in Time and Space—The Molecular Weight Effects of Polymeric Materials in Organic Photovoltaic Devices. Small Methods, 2022, 6, e2101548.	4.6	8
173	Efficient As ast Polymer Solar Cells with High and Stabilized Fill Factor. Solar Rrl, 2020, 4, 2000275.	3.1	7
174	Implications of Crystallization Temperatures of Organic Small Molecules in Optimizing Nonfullerene Solar Cell Performance. ACS Applied Energy Materials, 2021, 4, 8442-8453.	2.5	7
175	Revealing the Molar Mass Dependence on Thermal, Microstructural, and Electrical Properties of Direct Arylation Polycondensation Prepared Poly(3-hexylthiophene). ACS Applied Polymer Materials, 2022, 4, 1826-1835.	2.0	7
176	Fluorination Enables Tunable Molecular Interaction and Photovoltaic Performance in Non-Fullerene Solar Cells Based on Ester-Substituted Polythiophene. Frontiers in Chemistry, 2021, 9, 687996.	1.8	6
177	Stabilizing the microstructure for Y6-series nonfullerene solar cells. CheM, 2021, 7, 2853-2854.	5.8	6
178	A 3D nonfullerene electron acceptor with a 9,9′-bicarbazole backbone for high-efficiency organic solar cells. Organic Electronics, 2020, 84, 105784.	1.4	5
179	Near-infrared absorbing non-fullerene acceptors with unfused D-A-D core for efficient organic solar cells. Organic Electronics, 2021, 92, 106131.	1.4	5
180	Optimization of Monomer Molecular Structure for Polymer Electrodes Fabricated through inâ€situ Electroâ€Polymerization Strategy. ChemSusChem, 2021, 14, 4573-4582.	3.6	5

#	ARTICLE	IF	CITATIONS
181	New Electron Acceptor with End-Extended Conjugation for High-Performance Polymer Solar Cells. Energy & Fuels, 0, , .	2.5	5
182	When Electronically Inert Polymers Meet Conjugated Polymers: Emerging Opportunities in Organic Photovoltaics. Chinese Journal of Polymer Science (English Edition), 2022, 40, 861-869.	2.0	5
183	Relationship between charge transfer state electroluminescence and the degradation of organic photovoltaics. Applied Physics Letters, 2021, 118, .	1.5	4
184	Unraveling the Photovoltaic, Mechanical, and Microstructural Properties and Their Correlations in Simple Poly(3â€pentylthiophene) Solar Cells. Macromolecular Rapid Communications, 2022, 43, e2200229.	2.0	4
185	Conjugated Polymer Photovoltaic Materials. Lecture Notes in Quantum Chemistry II, 2015, , 195-239.	0.3	3
186	Solar Cells: Surpassing 10% Efficiency Benchmark for Nonfullerene Organic Solar Cells by Scalable Coating in Air from Single Nonhalogenated Solvent (Adv. Mater. 8/2018). Advanced Materials, 2018, 30, 1870054.	11.1	3
187	Revealing the Sideâ€Chainâ€Dependent Ordering Transition of Highly Crystalline Doubleâ€Cable Conjugated Polymers. Angewandte Chemie, 2021, 133, 25703-25711.	1.6	3
188	Subnanosecond charge photogeneration and recombination in polyfluorene copolymer-fullerene solar cell: Effects of electric field. Optics Express, 2013, 21, A241.	1.7	2
189	CHAPTER 2. New Polymer Donors for Polymer Solar Cells. RSC Polymer Chemistry Series, 2015, , 32-77.	0.1	2
190	Photovoltaics: Quantification of Nano―and Mesoscale Phase Separation and Relation to Donor and Acceptor Quantum Efficiency, <i>J</i> _{sc} , and FF in Polymer:Fullerene Solar Cells (Adv.) Tj ETQq0 0 C	rg₿∏1/Ον€	erløck 10 Tf 5
191	Semi-transparent organic solar cells for greenhouse application (Conference Presentation). , 2019, , .		1
192	å^†åé‡å⁻¹å±è½é«~å^†åè−"膜结构和电å∤性能的影哕 Scientia Sinica Chimica, 2021, , .	0.2	0
193	Over 11%-efficiency fullerene-free organic solar cells enabled by benign solvents (Conference) Tj ETQq1 1 0.7843	814 rgBT /(Overlock 10
194	Sequential deposition of organic films with eco-compatible solvents enables high-efficiency nonfullerene solar cells (Conference Presentation). , 2019, , .		0
195	Rational strategies to stabilize the morphology of non-fullerene organic solar cells (Conference) Tj ETQq1 1 0.784	4314 rgBT	/Qverlock 1(
196	The crucial role of end group planarity for fused-ring electron acceptors in organic solar cells (Conference Presentation). , 2019, , .		0
197	Abysmal failures of Y6 in polythiophene:nonfullerene solar cells: high efficiency requires a matched acceptor with much lower miscibility. , 2020, , .		0