William Fuller

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5211747/publications.pdf

Version: 2024-02-01

73 2,460 29 47
papers citations h-index g-index

75 75 75 2582 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Oxidant-induced Activation of Type I Protein Kinase A Is Mediated by RI Subunit Interprotein Disulfide Bond Formation. Journal of Biological Chemistry, 2006, 281, 21827-21836.	3.4	216
2	Glucose Deprivation Stimulates O-GlcNAc Modification of Proteins through Up-regulation of O-Linked N-Acetylglucosaminyltransferase. Journal of Biological Chemistry, 2008, 283, 6050-6057.	3.4	128
3	The Utility of N,N-Biotinyl Glutathione Disulfide in the Study of Protein S-Glutathiolation. Molecular and Cellular Proteomics, 2006, 5, 215-225.	3.8	120
4	Serine 68 phosphorylation of phospholemman: acute isoform-specific activation of cardiac Na/K ATPase. Cardiovascular Research, 2005, 65, 93-103.	3.8	108
5	Substrate recognition by the cell surface palmitoyl transferase DHHC5. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 17534-17539.	7.1	108
6	Ischemiaâ€induced phosphorylation of phospholemman directly activates rat cardiac Na/K ATPase. FASEB Journal, 2004, 18, 197-199.	0.5	107
7	Differential distribution and regulation of mouse cardiac Na+/K+-ATPase $\hat{l}\pm 1$ and $\hat{l}\pm 2$ subunits in T-tubule and surface sarcolemmal membranes. Cardiovascular Research, 2007, 73, 92-100.	3 . 8	90
8	Cardiac ischemia causes inhibition of the Na/K ATPase by a labile cytosolic compound whose production is linked to oxidant stress. Cardiovascular Research, 2003, 57, 1044-1051.	3.8	87
9	Off-target effects of sodium-glucose co-transporter 2 blockers: empagliflozin does not inhibit Na+/H+ exchanger-1 or lower [Na+]i in the heart. Cardiovascular Research, 2021, 117, 2794-2806.	3.8	84
10	The Inhibitory Effect of Phospholemman on the Sodium Pump Requires Its Palmitoylation. Journal of Biological Chemistry, 2011, 286, 36020-36031.	3.4	68
11	FXYD1 phosphorylation in vitro and in adult rat cardiac myocytes: threonine 69 is a novel substrate for protein kinase C. American Journal of Physiology - Cell Physiology, 2009, 296, C1346-C1355.	4.6	66
12	S-Thiolation of HSP27 Regulates Its Multimeric Aggregate Size Independently of Phosphorylation. Journal of Biological Chemistry, 2002, 277, 21189-21196.	3.4	65
13	Regulation of the cardiac sodium pump. Cellular and Molecular Life Sciences, 2013, 70, 1357-1380.	5.4	61
14	Novel regulation of cardiac Na pump via phospholemman. Journal of Molecular and Cellular Cardiology, 2013, 61, 83-93.	1.9	57
15	Post-translational Disruption of the ΔF508 Cystic Fibrosis Transmembrane Conductance Regulator (CFTR)-Molecular Chaperone Complex with Geldanamycin Stabilizes ΔF508 CFTR in the Rabbit Reticulocyte Lysate. Journal of Biological Chemistry, 2000, 275, 37462-37468.	3.4	55
16	$\hat{l}\pm$ B Crystallin Translocation and Phosphorylation: Signal Transduction Pathways and Preconditioning in the Isolated Rat Heart. Journal of Molecular and Cellular Cardiology, 2001, 33, 1659-1671.	1.9	54
17	Palmitoylation of the Na/Ca exchanger cytoplasmic loop controls its inactivation and internalization during stress signaling. FASEB Journal, 2015, 29, 4532-4543.	0.5	54
18	Control of protein palmitoylation by regulating substrate recruitment to a zDHHC-protein acyltransferase. Communications Biology, 2020, 3, 411.	4.4	54

#	Article	IF	Citations
19	Protein Sâ€Palmitoylation: advances and challenges in studying a therapeutically important lipid modification. FEBS Journal, 2022, 289, 861-882.	4.7	52
20	The intracellular region of FXYD1 is sufficient to regulate cardiac Na/K ATPase. FASEB Journal, 2007, 21, 1539-1546.	0.5	45
21	Intracellular sodium elevation reprograms cardiac metabolism. Nature Communications, 2020, 11, 4337.	12.8	44
22	Characterization of the phospholemman knockout mouse heart: depressed left ventricular function with increased Na-K-ATPase activity. American Journal of Physiology - Heart and Circulatory Physiology, 2008, 294, H613-H621.	3.2	42
23	Nitric oxide regulates cardiac intracellular Na+ and Ca2+ by modulating Na/K ATPase via PKCε and phospholemman-dependent mechanism. Journal of Molecular and Cellular Cardiology, 2013, 61, 164-171.	1.9	41
24	Cardiac hypertrophy in mice expressing unphosphorylatable phospholemman. Cardiovascular Research, 2014, 104, 72-82.	3.8	41
25	An amphipathic α-helix directs palmitoylation of the large intracellular loop of the sodium/calcium exchanger. Journal of Biological Chemistry, 2017, 292, 10745-10752.	3.4	41
26	Differential Centrifugation Separates Cardiac Sarcolemmal and Endosomal Membranes from Langendorff-Perfused Rat Hearts. Analytical Biochemistry, 2001, 293, 216-223.	2.4	40
27	Phospholemman Ser69 phosphorylation contributes to sildenafil-induced cardioprotection against reperfusion injury. American Journal of Physiology - Heart and Circulatory Physiology, 2010, 299, H827-H836.	3.2	39
28	Phospholemmanâ€dependent regulation of the cardiac Na/Kâ€ATPase activity is modulated by inhibitorâ€1 sensitive typeâ€1 phosphatase. FASEB Journal, 2011, 25, 4467-4475.	0.5	37
29	Dynamic Palmitoylation of the Sodium-Calcium Exchanger Modulates Its Structure, Affinity for Lipid-Ordered Domains, and Inhibition by XIP. Cell Reports, 2020, 31, 107697.	6.4	32
30	Heart failure leads to altered \hat{l}^22 -adrenoceptor/cyclic adenosine monophosphate dynamics in the sarcolemmal phospholemman/Na,K ATPase microdomain. Cardiovascular Research, 2019, 115, 546-555.	3.8	31
31	A Separate Pool of Cardiac Phospholemman That Does Not Regulate or Associate with the Sodium Pump. Journal of Biological Chemistry, 2013, 288, 13808-13820.	3.4	29
32	Identification of Caveolar Resident Proteins in Ventricular Myocytes Using a Quantitative Proteomic Approach: Dynamic Changes in Caveolar Composition Following Adrenoceptor Activation. Molecular and Cellular Proteomics, 2015, 14, 596-608.	3.8	25
33	Cysteine residues 244 and 458–459 within the catalytic subunit of Na,K-ATPase control the enzyme's hydrolytic and signaling function under hypoxic conditions. Redox Biology, 2017, 13, 310-319.	9.0	25
34	Regulation of the cardiac Na+ pump by palmitoylation of its catalytic and regulatory subunits. Biochemical Society Transactions, 2013, 41, 95-100.	3.4	24
35	S-palmitoylation and the regulation of NCX1. Channels, 2016, 10, 75-77.	2.8	24
36	Multiple quantum filtered 23Na NMR in the Langendorff perfused mouse heart: Ratio of triple/double quantum filtered signals correlates with [Na]i. Journal of Molecular and Cellular Cardiology, 2015, 86, 95-101.	1.9	22

#	Article	IF	Citations
37	Lactate-induced translocation of GLUT1 and GLUT4 is not mediated by the phosphatidylinositol-3-kinase pathway in the rat heart. Basic Research in Cardiology, 2002, 97, 168-176.	5.9	21
38	Maleimide scavenging enhances determination of protein S-palmitoylation state in acyl-exchange methods. BioTechniques, 2017, 62, 69-75.	1.8	21
39	Therapeutic targeting of protein S-acylation for the treatment of disease. Biochemical Society Transactions, 2020, 48, 281-290.	3.4	19
40	Post-translational regulation of cardiac myosin binding protein-C: A graphical review. Cellular Signalling, 2020, 76, 109788.	3.6	16
41	SGLT2 inhibitors and the cardiac Na+/H+ exchanger-1: the plot thickens. Cardiovascular Research, 2021, 117, 2702-2704.	3.8	16
42	Epidermal growth factor signaling through transient receptor potential melastatin 7 cation channel regulates vascular smooth muscle cell function. Clinical Science, 2020, 134, 2019-2035.	4.3	15
43	Regulation of NCX1 by palmitoylation. Cell Calcium, 2020, 86, 102158.	2.4	14
44	Greasing the wheels or a spanner in the works? Regulation of the cardiac sodium pump by palmitoylation. Critical Reviews in Biochemistry and Molecular Biology, 2018, 53, 175-191.	5.2	13
45	Maternal dietary supplementation with saturated, but not monounsaturated or polyunsaturated fatty acids, leads to tissueâ€specific inhibition of offspring Na ⁺ ,K ⁺ â€ATPase. Journal of Physiology, 2008, 586, 5013-5022.	2.9	12
46	Phospholemman Phosphorylation Regulates Vascular Tone, Blood Pressure, and Hypertension in Mice and Humans. Circulation, 2021, 143, 1123-1138.	1.6	12
47	Protein Phosphatase 1c Associated with the Cardiac Sodium Calcium Exchanger 1 Regulates Its Activity by Dephosphorylating Serine 68-phosphorylated Phospholemman. Journal of Biological Chemistry, 2016, 291, 4561-4579.	3.4	11
48	Phosphodiesterase type 4 anchoring regulates cAMP signaling to Popeye domain-containing proteins. Journal of Molecular and Cellular Cardiology, 2022, 165, 86-102.	1.9	11
49	Insights into the molecular basis of the palmitoylation and depalmitoylation of NCX1. Cell Calcium, 2021, 97, 102408.	2.4	10
50	Phospholemman and the Cardiac Sodium Pump. Circulation Research, 2006, 99, 1290-1292.	4.5	8
51	Understanding the rules governing NCX1 palmitoylation. Channels, 2017, 11, 377-379.	2.8	6
52	Topical review: Shedding light on molecular and cellular consequences of NCX1 palmitoylation. Cellular Signalling, 2020, 76, 109791.	3.6	6
53	Rab-GTPase binding effector protein 2 (RABEP2) is a primed substrate for Glycogen Synthase kinase-3 (GSK3). Scientific Reports, 2017, 7, 17682.	3.3	5
54	Caveolae and the cardiac myocyte. Current Opinion in Physiology, 2018, 1, 59-67.	1.8	5

#	Article	IF	CITATIONS
55	Insulin-induced palmitoylation regulates the Cardiac Na+/Ca2+ exchanger NCX1. Cell Calcium, 2022, 104, 102567.	2.4	5
56	Cyclophilin D palmitoylation and permeability transition: a new twist in the tale of myocardial ischaemia–reperfusion injury. Cardiovascular Research, 2021, 117, 15-17.	3.8	3
57	Regulation of cardiac Na/K ATPase by FXYD1 (phospholemman). Journal of Molecular and Cellular Cardiology, 2006, 40, 997.	1.9	2
58	Direct activation of Type I PKA by oxidants independently of cAMP is mediated by RI subunit interprotein disulphide bond formation. Journal of Molecular and Cellular Cardiology, 2006, 40, 928-929.	1.9	1
59	Characterisation of the Langendorff-perfused phospholemman knockout mouse heart: Effects of calcium concentration and pacing rate on contractility. Journal of Molecular and Cellular Cardiology, 2006, 40, 996.	1.9	1
60	Phospholemman is a substrate for PKA and PKC in cardiac myocytes but exists in distinct populations that are not available to both kinases. Journal of Molecular and Cellular Cardiology, 2006, 40, 996-997.	1.9	1
61	Nitric oxide-induced stimulation of the cardiac Na/K ATPase requires phospholemman. Journal of Molecular and Cellular Cardiology, 2007, 42, S54.	1.9	1
62	Phospholemman Recruits Peroxiredoxin 6 to the Cardiac Sodium Pump. Biophysical Journal, 2010, 98, 171a.	0.5	1
63	Phospholemman-Dependent Regulation of Na/K-Atpase Modulates Constriction and Relaxation in Aortic Smooth Muscle. Biophysical Journal, 2014, 106, 725a.	0.5	1
64	Identifying the beta-site amyloid precursor protein cleaving enzyme 1 interactome through the proximity-dependent biotin identification assay. Neuroscience Letters, 2021, , 136302.	2.1	1
65	Phosphorylation state of phospholemman at serine 68 regulates Na/K ATPase activity. Journal of Molecular and Cellular Cardiology, 2006, 40, 939-940.	1.9	0
66	Differential distribution of mouse cardiac Na/K ATPase $\hat{l}\pm 1$ and $\hat{l}\pm 2$ -subunit function in T-tubule and surface sarcolemmal membranes. Journal of Molecular and Cellular Cardiology, 2006, 40, 997.	1.9	0
67	Beta adrenergic stimulation of the Langendorff-perfused phospholemman knockout mouse heart. Journal of Molecular and Cellular Cardiology, 2007, 42, S27.	1.9	0
68	Regulation of the Cardiac Sodium/Calcium Exchanger by Protein Palmitoylation. Biophysical Journal, 2014, 106, 581a.	0.5	0
69	Pathophysiologically-Relevant Levels of Endogenous Cardiotonic Steroids Inhibit the Cardiac Na/K ATPase and Activate ERK1/2 Hypertrophic Signaling In Vivo and In Vitro. Biophysical Journal, 2014, 106, 304a.	0.5	0
70	Erratum to †Novel regulation of cardiac Na pump via phospholemman†[J Mol Cell Cardiol 61 (2013) 83†"93]. Journal of Molecular and Cellular Cardiology, 2014, 69, 75.	1.9	0
71	PP1 Anchoring onto NCX1 Facilitates Dephosphorylation of P-SER68-PLM. Biophysical Journal, 2015, 108, 584a.	0.5	0
72	BS27â€Harnessing the power of palmitoylation to tune NCX1 Physiology. , 2021, , .		0

#	Article	IF	CITATIONS
73	Abstract P092: Palmitoylation Controls Cell Surface Abundance Of Trpm7. Hypertension, 2020, 76, .	2.7	O