Kyle M Walsh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5210058/publications.pdf

Version: 2024-02-01

98 4,731 25 65
papers citations h-index g-index

101 101 101 8568 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Congenital Human Cytomegalovirus Infection Is Associated With Decreased Transplacental IgG Transfer Efficiency Due to Maternal Hypergammaglobulinemia. Clinical Infectious Diseases, 2022, 74, 1131-1140.	5.8	5
2	SARSâ€CoVâ€2 vaccine acceptability among caregivers of childhood cancer survivors. Pediatric Blood and Cancer, 2022, 69, e29443.	1.5	11
3	Insurance status as a mediator of clinical presentation, type of intervention, and short-term outcomes for patients with metastatic spine disease. Cancer Epidemiology, 2022, 76, 102073.	1.9	6
4	Shared genomic architecture between COVID-19 severity and numerous clinical and physiologic parameters revealed by LD score regression analysis. Scientific Reports, 2022, 12, 1891.	3.3	4
5	Mitochondrial 1555 G>A variant as a potential risk factor for childhood glioblastoma. Neuro-Oncology Advances, 2022, 4, vdac045.	0.7	1
6	Pleiotropic <i>MLLT10</i> variation confers risk of meningioma and estrogen-mediated cancers. Neuro-Oncology Advances, 2022, 4, .	0.7	4
7	An integrated genome and phenome-wide association study approach to understanding Alzheimer's disease predisposition. Neurobiology of Aging, 2022, 118, 117-123.	3.1	3
8	Capicua (CIC) mutations in gliomas in association with MAPK activation for exposing a potential therapeutic target Journal of Clinical Oncology, 2022, 40, 2056-2056.	1.6	0
9	Maternal Fc-mediated non-neutralizing antibody responses correlate with protection against congenital human cytomegalovirus infection. Journal of Clinical Investigation, 2022, 132, .	8.2	27
10	What is the burden of proof for tumor mutational burden in gliomas?. Neuro-Oncology, 2021, 23, 17-22.	1.2	15
11	The genome-wide impact of trisomy 21 on DNA methylation and its implications for hematopoiesis. Nature Communications, 2021, 12, 821.	12.8	32
12	Impacts of COVIDâ€19 on caregivers of childhood cancer survivors. Pediatric Blood and Cancer, 2021, 68, e28943.	1.5	41
13	Partitioned glioma heritability shows subtype-specific enrichment in immune cells. Neuro-Oncology, 2021, 23, 1304-1314.	1.2	12
14	The Shared Genetic Architectures Between Lung Cancer and Multiple Polygenic Phenotypes in Genome-Wide Association Studies. Cancer Epidemiology Biomarkers and Prevention, 2021, 30, 1156-1164.	2.5	13
15	Opportunities, barriers, and recommendations in Down syndrome research. Translational Science of Rare Diseases, 2021, 5, 99-129.	1.5	33
16	A Modified Nucleoside 6-Thio-2′-Deoxyguanosine Exhibits Antitumor Activity in Gliomas. Clinical Cancer Research, 2021, 27, 6800-6814.	7.0	10
17	The shared genetic architecture between epidemiological and behavioral traits with lung cancer. Scientific Reports, 2021, 11, 17559.	3.3	10
18	A pleiotropic ATM variant (rs 1800057 C>G) is associated with risk of multiple cancers. Carcinogenesis, $2021, , .$	2.8	1

#	Article	IF	Citations
19	Long telomeres in need of a SNP: Germline contributions of telomere maintenance to glioma. Neuro-Oncology, 2021, , .	1.2	O
20	EPID-09. VARIATION IN GLIOMA INCIDENCE AMONG US HISPANICS BY GEOGRAPHIC REGION OF ORIGIN. Neuro-Oncology, 2021, 23, vi87-vi87.	1.2	0
21	A Need for More Molecular Profiling in Brain Metastases. Frontiers in Oncology, 2021, 11, 785064.	2.8	1
22	BIOM-17. DIFFERENCES IN THE IMMUNE MICROENVIRONMENT OF GLIOMAS HARBORING IDH2 VERSUS IDH1 MUTATIONS. Neuro-Oncology, 2021, 23, vi13-vi14.	1.2	0
23	Common genetic variation and risk of osteosarcoma in a multi-ethnic pediatric and adolescent population. Bone, 2020, 130, 115070.	2.9	22
24	Genetic variation associated with childhood and adult stature and risk of <i>MYCN</i> â€amplified neuroblastoma. Cancer Medicine, 2020, 9, 8216-8225.	2.8	3
25	Cytomegalovirus as an immunomodulator across the lifespan. Current Opinion in Virology, 2020, 44, 112-120.	5.4	20
26	European genetic ancestry associated with risk of childhood ependymoma. Neuro-Oncology, 2020, 22, 1637-1646.	1.2	16
27	Associations between genetic variants of KIF5B, FMN1, and MGAT3 in the cadherin pathway and pancreatic cancer risk. Cancer Medicine, 2020, 9, 9620-9631.	2.8	1
28	Genetic predisposition to longer telomere length and risk of childhood, adolescent and adult-onset ependymoma. Acta Neuropathologica Communications, 2020, 8, 173.	5.2	15
29	Pediatric glioma and medulloblastoma risk and population demographics: a Poisson regression analysis. Neuro-Oncology Advances, 2020, 2, vdaa089.	0.7	6
30	The Paradoxical Effects of COVID-19 on Cancer Care: Current Context and Potential Lasting Impacts. Clinical Cancer Research, 2020, 26, 5809-5813.	7.0	44
31	Frequent Mutations of POT1 Distinguish Pulmonary Sarcomatoid Carcinoma From Other Lung Cancer Histologies. Clinical Lung Cancer, 2020, 21, e523-e527.	2.6	7
32	Genetic variants of the peroxisome proliferatorâ€activated receptor (PPAR) signaling pathway genes and risk of pancreatic cancer. Molecular Carcinogenesis, 2020, 59, 930-939.	2.7	11
33	Leveraging Genome and Phenome-Wide Association Studies to Investigate Genetic Risk of Acute Lymphoblastic Leukemia. Cancer Epidemiology Biomarkers and Prevention, 2020, 29, 1606-1614.	2.5	13
34	Epidemiology of meningiomas. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2020, 169, 3-15.	1.8	17
35	<i>POT1</i> mutation spectrum in tumour types commonly diagnosed among <i>POT1</i> hereditary cancer syndrome families. Journal of Medical Genetics, 2020, 57, 664-670.	3.2	28
36	Germline cancer predisposition variants and pediatric glioma: a population-based study in California. Neuro-Oncology, 2020, 22, 864-874.	1.2	24

#	Article	IF	Citations
37	Telomere Attrition in Childhood Cancer Survivors. Clinical Cancer Research, 2020, 26, 2281-2283.	7.0	4
38	Molecular features of gliomas with high tumor mutational burden Journal of Clinical Oncology, 2020, 38, 2549-2549.	1.6	0
39	Associations of novel variants in , and of the ATM pathway genes with pancreatic cancer risk. American Journal of Cancer Research, 2020, 10, 2128-2144.	1.4	2
40	EPID-06. QUANTIFYING THE POTENTIAL PUBLIC HEALTH IMPACT OF VARICELLA ZOSTER VIRUS (VZV) VACCINATION ON GLIOMA INCIDENCE. Neuro-Oncology, 2020, 22, ii79-ii79.	1.2	0
41	COVD-25. THE PARADOXICAL EFFECTS OF COVID-19 ON CANCER CARE IN THE NEURO-ONCOLOGY SETTING. Neuro-Oncology, 2020, 22, ii26-ii26.	1.2	0
42	BIOM-17. BRAF MUTATION IS AN EARLY EVENT IN THE EVOLUTION OF A SUBSET OF GLIOBLASTOMAS AND IS ASSOCIATED WITH INCREASED PD-L1 EXPRESSION. Neuro-Oncology, 2020, 22, ii5-ii5.	1.2	0
43	COVD-07. THE IMPACT OF COVID-19 ON PATIENTS AND CAREGIVERS AFFECTED BY BRAIN TUMORS: THE PATIENT NAVIGATOR PERSPECTIVE. Neuro-Oncology, 2020, 22, ii22-ii22.	1.2	0
44	Inherited genetic susceptibility to acute lymphoblastic leukemia in Down syndrome. Blood, 2019, 134, 1227-1237.	1.4	37
45	Heritable variation at the chromosome 21 gene ERG is associated with acute lymphoblastic leukemia risk in children with and without Down syndrome. Leukemia, 2019, 33, 2746-2751.	7.2	18
46	Germline genetic landscape of pediatric central nervous system tumors. Neuro-Oncology, 2019, 21, 1376-1388.	1.2	24
47	Mendelian randomization provides support for obesity as a risk factor for meningioma. Scientific Reports, 2019, 9, 309.	3.3	21
48	Three novel genetic variants in NRF2 signaling pathway genes are associated with pancreatic cancer risk. Cancer Science, 2019, 110, 2022-2032.	3.9	14
49	Predisposing germline mutations in high hyperdiploid acute lymphoblastic leukemia in children. Genes Chromosomes and Cancer, 2019, 58, 723-730.	2.8	17
50	Genetic variants in the liver kinase B1â€AMPâ€activated protein kinase pathway genes and pancreatic cancer risk. Molecular Carcinogenesis, 2019, 58, 1338-1348.	2.7	14
51	Diet and risk of glioma: targets for prevention remain elusive. Neuro-Oncology, 2019, 21, 832-833.	1.2	4
52	Potential functional variants in SMC2 and TP53 in the AURORA pathway genes and risk of pancreatic cancer. Carcinogenesis, 2019, 40, 521-528.	2.8	17
53	MNGI-12. PLEIOTROPIC MLLT10 VARIATION CONFERS RISK OF MENINGIOMA, BREAST, AND OVARIAN CANCERS. Neuro-Oncology, 2019, 21, vi142-vi142.	1,2	O
54	EPID-19. SHARED GENOMIC ARCHITECTURE OF GLIOMA AND NEURO-COGNITIVE AND NEURO-PSYCHIATRIC TRAITS REVEALED BY LD-SCORE REGRESSION. Neuro-Oncology, 2019, 21, vi78-vi78.	1,2	0

#	Article	IF	CITATIONS
55	PDTM-33. EUROPEAN GENETIC ANCESTRY ASSOCIATED WITH RISK OF CHILDHOOD EPENDYMOMA. Neuro-Oncology, 2019, 21, vi194-vi194.	1.2	O
56	Performance of a nomogram for IDH-wild-type glioblastoma patient survival in an elderly cohort. Neuro-Oncology Advances, 2019, 1, vdz036.	0.7	4
57	GENE-11. LDSCORE REGRESSION IDENTIFIES NOVEL ASSOCIATIONS BETWEEN GLIOMA AND AUTO-IMMUNE CONDITIONS. Neuro-Oncology, 2019, 21, vi99-vi100.	1.2	O
58	PATH-66. THE GENOMIC LANDSCAPE OF SPINAL CORD EPENDYMOMA. Neuro-Oncology, 2019, 21, vi158-vi158.	1.2	0
59	GWAS in childhood acute lymphoblastic leukemia reveals novel genetic associations at chromosomes 17q12 and 8q24.21. Nature Communications, 2018, 9, 286.	12.8	7 5
60	Genomic analysis of the origins and evolution of multicentric diffuse lower-grade gliomas. Neuro-Oncology, 2018, 20, 632-641.	1.2	33
61	A germ-line deletion of APOBEC3B does not contribute to subtype-specific childhood acute lymphoblastic leukemia etiology. Haematologica, 2018, 103, e29-e31.	3.5	1
62	Genetic determinants of childhood and adult height associated with osteosarcoma risk. Cancer, 2018, 124, 3742-3752.	4.1	20
63	Disruption of the \hat{l}^21L Isoform of GABP Reverses Glioblastoma Replicative Immortality in a TERT Promoter Mutation-Dependent Manner. Cancer Cell, 2018, 34, 513-528.e8.	16.8	103
64	Genome-wide association analysis identifies a meningioma risk locus at 11p15.5. Neuro-Oncology, 2018, 20, 1485-1493.	1.2	23
65	<i>BMI1</i> enhancer polymorphism underlies chromosome 10p12.31 association with childhood acute lymphoblastic leukemia. International Journal of Cancer, 2018, 143, 2647-2658.	5.1	23
66	Two HLA Class II Gene Variants Are Independently Associated with Pediatric Osteosarcoma Risk. Cancer Epidemiology Biomarkers and Prevention, 2018, 27, 1151-1158.	2.5	4
67	Genomic characterization of chronic lymphocytic leukemia (CLL) in radiation-exposed Chornobyl cleanup workers. Environmental Health, 2018, 17, 43.	4.0	11
68	Intermediate phenotypes underlying osteosarcoma risk. Oncotarget, 2018, 9, 37345-37346.	1.8	5
69	Correlates of Prenatal and Early-Life Tobacco Smoke Exposure and Frequency of Common Gene Deletions in Childhood Acute Lymphoblastic Leukemia. Cancer Research, 2017, 77, 1674-1683.	0.9	28
70	Association Between Telomere Length and Risk of Cancer and Non-Neoplastic Diseases. JAMA Oncology, 2017, 3, 636.	7.1	376
71	Adult infiltrating gliomas with WHO 2016 integrated diagnosis: additional prognostic roles of ATRX and TERT. Acta Neuropathologica, 2017, 133, 1001-1016.	7.7	245
72	In utero cytomegalovirus infection and development of childhood acute lymphoblastic leukemia. Blood, 2017, 129, 1680-1684.	1.4	55

#	Article	IF	Citations
73	Non-additive and epistatic effects of HLA polymorphisms contributing to risk of adult glioma. Journal of Neuro-Oncology, 2017, 135, 237-244.	2.9	13
74	Perinatal factors associated with clinical presentation of osteosarcoma in children and adolescents. Pediatric Blood and Cancer, 2017, 64, e26349.	1.5	28
75	Genetic Variation Associated with Longer Telomere Length Increases Risk of Chronic Lymphocytic Leukemia. Cancer Epidemiology Biomarkers and Prevention, 2016, 25, 1043-1049.	2.5	61
76	Common genetic variants associated with telomere length confer risk for neuroblastoma and other childhood cancers. Carcinogenesis, 2016, 37, 576-582.	2.8	60
77	Mutant IDH1 Expression Drives <i>TERT</i> Promoter Reactivation as Part of the Cellular Transformation Process. Cancer Research, 2016, 76, 6680-6689.	0.9	55
78	Gene by Environment Investigation of Incident Lung Cancer Risk in African-Americans. EBioMedicine, 2016, 4, 153-161.	6.1	12
79	Understanding inherited genetic risk of adult glioma – a review. Neuro-Oncology Practice, 2016, 3, 10-16.	1.6	62
80	Epidemiology. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2016, 134, 3-18.	1.8	15
81	Telomere length connects melanoma and glioma predispositions. Aging, 2016, 8, 423-424.	3.1	6
82	Clonal and microclonal mutational heterogeneity in high hyperdiploid acute lymphoblastic leukemia. Oncotarget, 2016, 7, 72733-72745.	1.8	12
83	Somatic and Germline Mutational Heterogeneity in High Hyperdiploid Acute Lymphoblastic Leukemia. Blood, 2016, 128, 1727-1727.	1.4	0
84	Somatic Mutation Allelic Ratio Test Using ddPCR (SMART-ddPCR): An Accurate Method for Assessment of Preferential Allelic Imbalance in Tumor DNA. PLoS ONE, 2015, 10, e0143343.	2.5	4
85	Germline Mutations in Shelterin Complex Genes Are Associated With Familial Glioma. Journal of the National Cancer Institute, 2015, 107, 384.	6.3	172
86	Telomere maintenance and the etiology of adult glioma. Neuro-Oncology, 2015, 17, 1445-1452.	1,2	70
87	The transcription factor GABP selectively binds and activates the mutant TERT promoter in cancer. Science, 2015, 348, 1036-1039.	12.6	451
88	A Heritable Missense Polymorphism in <i>CDKN2A</i> Confers Strong Risk of Childhood Acute Lymphoblastic Leukemia and Is Preferentially Selected during Clonal Evolution. Cancer Research, 2015, 75, 4884-4894.	0.9	38
89	Longer genotypically-estimated leukocyte telomere length is associated with increased adult glioma risk. Oncotarget, 2015, 6, 42468-42477.	1.8	87
90	The epidemiology of glioma in adults: a "state of the science" review. Neuro-Oncology, 2014, 16, 896-913.	1.2	1,586

#	Article	IF	CITATION
91	Genomic ancestry and somatic alterations correlate with age at diagnosis in Hispanic children with Bâ€cell acute lymphoblastic leukemia. American Journal of Hematology, 2014, 89, 721-725.	4.1	30
92	Variants near TERT and TERC influencing telomere length are associated with high-grade glioma risk. Nature Genetics, 2014, 46, 731-735.	21.4	161
93	Analysis of 60 Reported Glioma Risk <scp>SNP</scp> s Replicates Published <scp>GWAS</scp> Findings but Fails to Replicate Associations From Published Candidateâ€Gene Studies. Genetic Epidemiology, 2013, 37, 222-228.	1.3	47
94	Genetic variants in telomerase-related genes are associated with an older age at diagnosis in glioma patients: evidence for distinct pathways of gliomagenesis. Neuro-Oncology, 2013, 15, 1041-1047.	1,2	42
95	GATA3 risk alleles are associated with ancestral components in Hispanic children with ALL. Blood, 2013, 122, 3385-3387.	1.4	29
96	Cigarette Smoking and Risk of Meningioma: The Effect of Gender. Cancer Epidemiology Biomarkers and Prevention, 2012, 21, 943-950.	2.5	19
97	Association study of nicotinic acetylcholine receptor genes identifies a novel lung cancer susceptibility locus near CHRNA1 in African-Americans. Oncotarget, 2012, 3, 1428-1438.	1.8	11
98	A pilot genome-wide association study shows genomic variants enriched in the non-tumor cells of patients with well-differentiated neuroendocrine tumors of the ileum. Endocrine-Related Cancer, 2011, 18, 171-180.	3.1	22