List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5210058/publications.pdf Version: 2024-02-01



KVIE M WAISH

| #  | Article                                                                                                                                                                                                                       | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | The epidemiology of glioma in adults: a "state of the science" review. Neuro-Oncology, 2014, 16, 896-913.                                                                                                                     | 1.2  | 1,586     |
| 2  | The transcription factor GABP selectively binds and activates the mutant TERT promoter in cancer.<br>Science, 2015, 348, 1036-1039.                                                                                           | 12.6 | 451       |
| 3  | Association Between Telomere Length and Risk of Cancer and Non-Neoplastic Diseases. JAMA Oncology, 2017, 3, 636.                                                                                                              | 7.1  | 376       |
| 4  | Adult infiltrating gliomas with WHO 2016 integrated diagnosis: additional prognostic roles of ATRX and TERT. Acta Neuropathologica, 2017, 133, 1001-1016.                                                                     | 7.7  | 245       |
| 5  | Germline Mutations in Shelterin Complex Genes Are Associated With Familial Glioma. Journal of the<br>National Cancer Institute, 2015, 107, 384.                                                                               | 6.3  | 172       |
| 6  | Variants near TERT and TERC influencing telomere length are associated with high-grade glioma risk.<br>Nature Genetics, 2014, 46, 731-735.                                                                                    | 21.4 | 161       |
| 7  | Disruption of the β1L Isoform of GABP Reverses Glioblastoma Replicative Immortality in a TERT Promoter<br>Mutation-Dependent Manner. Cancer Cell, 2018, 34, 513-528.e8.                                                       | 16.8 | 103       |
| 8  | Longer genotypically-estimated leukocyte telomere length is associated with increased adult glioma risk. Oncotarget, 2015, 6, 42468-42477.                                                                                    | 1.8  | 87        |
| 9  | GWAS in childhood acute lymphoblastic leukemia reveals novel genetic associations at chromosomes 17q12 and 8q24.21. Nature Communications, 2018, 9, 286.                                                                      | 12.8 | 75        |
| 10 | Telomere maintenance and the etiology of adult glioma. Neuro-Oncology, 2015, 17, 1445-1452.                                                                                                                                   | 1.2  | 70        |
| 11 | Understanding inherited genetic risk of adult glioma – a review. Neuro-Oncology Practice, 2016, 3,<br>10-16.                                                                                                                  | 1.6  | 62        |
| 12 | Genetic Variation Associated with Longer Telomere Length Increases Risk of Chronic Lymphocytic<br>Leukemia. Cancer Epidemiology Biomarkers and Prevention, 2016, 25, 1043-1049.                                               | 2.5  | 61        |
| 13 | Common genetic variants associated with telomere length confer risk for neuroblastoma and other childhood cancers. Carcinogenesis, 2016, 37, 576-582.                                                                         | 2.8  | 60        |
| 14 | Mutant IDH1 Expression Drives <i>TERT</i> Promoter Reactivation as Part of the Cellular Transformation Process. Cancer Research, 2016, 76, 6680-6689.                                                                         | 0.9  | 55        |
| 15 | In utero cytomegalovirus infection and development of childhood acute lymphoblastic leukemia.<br>Blood, 2017, 129, 1680-1684.                                                                                                 | 1.4  | 55        |
| 16 | Analysis of 60 Reported Glioma Risk <scp>SNP</scp> s Replicates Published <scp>GWAS</scp> Findings<br>but Fails to Replicate Associations From Published Candidateâ€Gene Studies. Genetic Epidemiology, 2013,<br>37, 222-228. | 1.3  | 47        |
| 17 | The Paradoxical Effects of COVID-19 on Cancer Care: Current Context and Potential Lasting Impacts.<br>Clinical Cancer Research, 2020, 26, 5809-5813.                                                                          | 7.0  | 44        |
| 18 | Genetic variants in telomerase-related genes are associated with an older age at diagnosis in glioma patients: evidence for distinct pathways of gliomagenesis. Neuro-Oncology, 2013, 15, 1041-1047.                          | 1.2  | 42        |

| #  | Article                                                                                                                                                                                                              | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Impacts of COVIDâ€19 on caregivers of childhood cancer survivors. Pediatric Blood and Cancer, 2021, 68, e28943.                                                                                                      | 1.5  | 41        |
| 20 | A Heritable Missense Polymorphism in <i>CDKN2A</i> Confers Strong Risk of Childhood Acute<br>Lymphoblastic Leukemia and Is Preferentially Selected during Clonal Evolution. Cancer Research, 2015,<br>75, 4884-4894. | 0.9  | 38        |
| 21 | Inherited genetic susceptibility to acute lymphoblastic leukemia in Down syndrome. Blood, 2019, 134,<br>1227-1237.                                                                                                   | 1.4  | 37        |
| 22 | Genomic analysis of the origins and evolution of multicentric diffuse lower-grade gliomas.<br>Neuro-Oncology, 2018, 20, 632-641.                                                                                     | 1.2  | 33        |
| 23 | Opportunities, barriers, and recommendations in Down syndrome research. Translational Science of Rare Diseases, 2021, 5, 99-129.                                                                                     | 1.5  | 33        |
| 24 | The genome-wide impact of trisomy 21 on DNA methylation and its implications for hematopoiesis.<br>Nature Communications, 2021, 12, 821.                                                                             | 12.8 | 32        |
| 25 | Genomic ancestry and somatic alterations correlate with age at diagnosis in Hispanic children with<br>B ell acute lymphoblastic leukemia. American Journal of Hematology, 2014, 89, 721-725.                         | 4.1  | 30        |
| 26 | GATA3 risk alleles are associated with ancestral components in Hispanic children with ALL. Blood, 2013, 122, 3385-3387.                                                                                              | 1.4  | 29        |
| 27 | Correlates of Prenatal and Early-Life Tobacco Smoke Exposure and Frequency of Common Gene<br>Deletions in Childhood Acute Lymphoblastic Leukemia. Cancer Research, 2017, 77, 1674-1683.                              | 0.9  | 28        |
| 28 | Perinatal factors associated with clinical presentation of osteosarcoma in children and adolescents.<br>Pediatric Blood and Cancer, 2017, 64, e26349.                                                                | 1.5  | 28        |
| 29 | <i>POT1</i> mutation spectrum in tumour types commonly diagnosed among <i>POT1</i> -associated hereditary cancer syndrome families. Journal of Medical Genetics, 2020, 57, 664-670.                                  | 3.2  | 28        |
| 30 | Maternal Fc-mediated non-neutralizing antibody responses correlate with protection against congenital human cytomegalovirus infection. Journal of Clinical Investigation, 2022, 132, .                               | 8.2  | 27        |
| 31 | Germline genetic landscape of pediatric central nervous system tumors. Neuro-Oncology, 2019, 21, 1376-1388.                                                                                                          | 1.2  | 24        |
| 32 | Germline cancer predisposition variants and pediatric glioma: a population-based study in California.<br>Neuro-Oncology, 2020, 22, 864-874.                                                                          | 1.2  | 24        |
| 33 | Genome-wide association analysis identifies a meningioma risk locus at 11p15.5. Neuro-Oncology, 2018, 20, 1485-1493.                                                                                                 | 1.2  | 23        |
| 34 | <i>BMI1</i> enhancer polymorphism underlies chromosome 10p12.31 association with childhood acute<br>lymphoblastic leukemia. International Journal of Cancer, 2018, 143, 2647-2658.                                   | 5.1  | 23        |
| 35 | A pilot genome-wide association study shows genomic variants enriched in the non-tumor cells of patients with well-differentiated neuroendocrine tumors of the ileum. Endocrine-Related Cancer, 2011, 18, 171-180.   | 3.1  | 22        |
| 36 | Common genetic variation and risk of osteosarcoma in a multi-ethnic pediatric and adolescent population. Bone, 2020, 130, 115070.                                                                                    | 2.9  | 22        |

| #  | Article                                                                                                                                                                                           | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Mendelian randomization provides support for obesity as a risk factor for meningioma. Scientific<br>Reports, 2019, 9, 309.                                                                        | 3.3 | 21        |
| 38 | Genetic determinants of childhood and adult height associated with osteosarcoma risk. Cancer, 2018, 124, 3742-3752.                                                                               | 4.1 | 20        |
| 39 | Cytomegalovirus as an immunomodulator across the lifespan. Current Opinion in Virology, 2020, 44, 112-120.                                                                                        | 5.4 | 20        |
| 40 | Cigarette Smoking and Risk of Meningioma: The Effect of Gender. Cancer Epidemiology Biomarkers and Prevention, 2012, 21, 943-950.                                                                 | 2.5 | 19        |
| 41 | Heritable variation at the chromosome 21 gene ERG is associated with acute lymphoblastic leukemia risk in children with and without Down syndrome. Leukemia, 2019, 33, 2746-2751.                 | 7.2 | 18        |
| 42 | Predisposing germline mutations in high hyperdiploid acute lymphoblastic leukemia in children. Genes<br>Chromosomes and Cancer, 2019, 58, 723-730.                                                | 2.8 | 17        |
| 43 | Potential functional variants in SMC2 and TP53 in the AURORA pathway genes and risk of pancreatic cancer. Carcinogenesis, 2019, 40, 521-528.                                                      | 2.8 | 17        |
| 44 | Epidemiology of meningiomas. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn,<br>2020, 169, 3-15.                                                                             | 1.8 | 17        |
| 45 | European genetic ancestry associated with risk of childhood ependymoma. Neuro-Oncology, 2020, 22, 1637-1646.                                                                                      | 1.2 | 16        |
| 46 | Epidemiology. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2016, 134, 3-18.                                                                                               | 1.8 | 15        |
| 47 | Genetic predisposition to longer telomere length and risk of childhood, adolescent and adult-onset ependymoma. Acta Neuropathologica Communications, 2020, 8, 173.                                | 5.2 | 15        |
| 48 | What is the burden of proof for tumor mutational burden in gliomas?. Neuro-Oncology, 2021, 23, 17-22.                                                                                             | 1.2 | 15        |
| 49 | Three novel genetic variants in NRF2 signaling pathway genes are associated with pancreatic cancer risk. Cancer Science, 2019, 110, 2022-2032.                                                    | 3.9 | 14        |
| 50 | Genetic variants in the liver kinase B1â€AMPâ€activated protein kinase pathway genes and pancreatic<br>cancer risk. Molecular Carcinogenesis, 2019, 58, 1338-1348.                                | 2.7 | 14        |
| 51 | Non-additive and epistatic effects of HLA polymorphisms contributing to risk of adult glioma. Journal of Neuro-Oncology, 2017, 135, 237-244.                                                      | 2.9 | 13        |
| 52 | Leveraging Genome and Phenome-Wide Association Studies to Investigate Genetic Risk of Acute<br>Lymphoblastic Leukemia. Cancer Epidemiology Biomarkers and Prevention, 2020, 29, 1606-1614.        | 2.5 | 13        |
| 53 | The Shared Genetic Architectures Between Lung Cancer and Multiple Polygenic Phenotypes in<br>Genome-Wide Association Studies. Cancer Epidemiology Biomarkers and Prevention, 2021, 30, 1156-1164. | 2.5 | 13        |
| 54 | Gene by Environment Investigation of Incident Lung Cancer Risk in African-Americans. EBioMedicine, 2016, 4, 153-161.                                                                              | 6.1 | 12        |

| #  | Article                                                                                                                                                                                                         | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Partitioned glioma heritability shows subtype-specific enrichment in immune cells. Neuro-Oncology, 2021, 23, 1304-1314.                                                                                         | 1.2 | 12        |
| 56 | Clonal and microclonal mutational heterogeneity in high hyperdiploid acute lymphoblastic leukemia.<br>Oncotarget, 2016, 7, 72733-72745.                                                                         | 1.8 | 12        |
| 57 | Genomic characterization of chronic lymphocytic leukemia (CLL) in radiation-exposed Chornobyl cleanup workers. Environmental Health, 2018, 17, 43.                                                              | 4.0 | 11        |
| 58 | Genetic variants of the peroxisome proliferatorâ€activated receptor (PPAR) signaling pathway genes and<br>risk of pancreatic cancer. Molecular Carcinogenesis, 2020, 59, 930-939.                               | 2.7 | 11        |
| 59 | Association study of nicotinic acetylcholine receptor genes identifies a novel lung cancer susceptibility locus near CHRNA1 in African-Americans. Oncotarget, 2012, 3, 1428-1438.                               | 1.8 | 11        |
| 60 | SARS oVâ€⊋ vaccine acceptability among caregivers of childhood cancer survivors. Pediatric Blood and<br>Cancer, 2022, 69, e29443.                                                                               | 1.5 | 11        |
| 61 | A Modified Nucleoside 6-Thio-2′-Deoxyguanosine Exhibits Antitumor Activity in Gliomas. Clinical Cancer<br>Research, 2021, 27, 6800-6814.                                                                        | 7.0 | 10        |
| 62 | The shared genetic architecture between epidemiological and behavioral traits with lung cancer.<br>Scientific Reports, 2021, 11, 17559.                                                                         | 3.3 | 10        |
| 63 | Frequent Mutations of POT1 Distinguish Pulmonary Sarcomatoid Carcinoma From Other Lung Cancer<br>Histologies. Clinical Lung Cancer, 2020, 21, e523-e527.                                                        | 2.6 | 7         |
| 64 | Pediatric glioma and medulloblastoma risk and population demographics: a Poisson regression analysis. Neuro-Oncology Advances, 2020, 2, vdaa089.                                                                | 0.7 | 6         |
| 65 | Telomere length connects melanoma and glioma predispositions. Aging, 2016, 8, 423-424.                                                                                                                          | 3.1 | 6         |
| 66 | Insurance status as a mediator of clinical presentation, type of intervention, and short-term outcomes for patients with metastatic spine disease. Cancer Epidemiology, 2022, 76, 102073.                       | 1.9 | 6         |
| 67 | Congenital Human Cytomegalovirus Infection Is Associated With Decreased Transplacental IgG<br>Transfer Efficiency Due to Maternal Hypergammaglobulinemia. Clinical Infectious Diseases, 2022, 74,<br>1131-1140. | 5.8 | 5         |
| 68 | Intermediate phenotypes underlying osteosarcoma risk. Oncotarget, 2018, 9, 37345-37346.                                                                                                                         | 1.8 | 5         |
| 69 | Somatic Mutation Allelic Ratio Test Using ddPCR (SMART-ddPCR): An Accurate Method for Assessment of Preferential Allelic Imbalance in Tumor DNA. PLoS ONE, 2015, 10, e0143343.                                  | 2.5 | 4         |
| 70 | Two HLA Class II Gene Variants Are Independently Associated with Pediatric Osteosarcoma Risk. Cancer Epidemiology Biomarkers and Prevention, 2018, 27, 1151-1158.                                               | 2.5 | 4         |
| 71 | Diet and risk of glioma: targets for prevention remain elusive. Neuro-Oncology, 2019, 21, 832-833.                                                                                                              | 1.2 | 4         |
| 72 | Performance of a nomogram for IDH-wild-type glioblastoma patient survival in an elderly cohort.<br>Neuro-Oncology Advances, 2019, 1, vdz036.                                                                    | 0.7 | 4         |

| #  | Article                                                                                                                                                                              | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Telomere Attrition in Childhood Cancer Survivors. Clinical Cancer Research, 2020, 26, 2281-2283.                                                                                     | 7.0 | 4         |
| 74 | Shared genomic architecture between COVID-19 severity and numerous clinical and physiologic parameters revealed by LD score regression analysis. Scientific Reports, 2022, 12, 1891. | 3.3 | 4         |
| 75 | Pleiotropic <i>MLLT10</i> variation confers risk of meningioma and estrogen-mediated cancers.<br>Neuro-Oncology Advances, 2022, 4, .                                                 | 0.7 | 4         |
| 76 | Genetic variation associated with childhood and adult stature and risk of <i>MYCN</i> â€amplified neuroblastoma. Cancer Medicine, 2020, 9, 8216-8225.                                | 2.8 | 3         |
| 77 | An integrated genome and phenome-wide association study approach to understanding Alzheimer's disease predisposition. Neurobiology of Aging, 2022, 118, 117-123.                     | 3.1 | 3         |
| 78 | Associations of novel variants in , and of the ATM pathway genes with pancreatic cancer risk.<br>American Journal of Cancer Research, 2020, 10, 2128-2144.                           | 1.4 | 2         |
| 79 | A germ-line deletion of APOBEC3B does not contribute to subtype-specific childhood acute<br>lymphoblastic leukemia etiology. Haematologica, 2018, 103, e29-e31.                      | 3.5 | 1         |
| 80 | Associations between genetic variants of KIF5B , FMN1 , and MGAT3 in the cadherin pathway and pancreatic cancer risk. Cancer Medicine, 2020, 9, 9620-9631.                           | 2.8 | 1         |
| 81 | A pleiotropic ATM variant (rs1800057 C>C) is associated with risk of multiple cancers.<br>Carcinogenesis, 2021, , .                                                                  | 2.8 | 1         |
| 82 | A Need for More Molecular Profiling in Brain Metastases. Frontiers in Oncology, 2021, 11, 785064.                                                                                    | 2.8 | 1         |
| 83 | Mitochondrial 1555 G>A variant as a potential risk factor for childhood glioblastoma.<br>Neuro-Oncology Advances, 2022, 4, vdac045.                                                  | 0.7 | 1         |
| 84 | MNGI-12. PLEIOTROPIC MLLT10 VARIATION CONFERS RISK OF MENINGIOMA, BREAST, AND OVARIAN CANCERS.<br>Neuro-Oncology, 2019, 21, vi142-vi142.                                             | 1.2 | 0         |
| 85 | EPID-19. SHARED GENOMIC ARCHITECTURE OF GLIOMA AND NEURO-COGNITIVE AND NEURO-PSYCHIATRIC TRAITS REVEALED BY LD-SCORE REGRESSION. Neuro-Oncology, 2019, 21, vi78-vi78.                | 1.2 | 0         |
| 86 | PDTM-33. EUROPEAN GENETIC ANCESTRY ASSOCIATED WITH RISK OF CHILDHOOD EPENDYMOMA.<br>Neuro-Oncology, 2019, 21, vi194-vi194.                                                           | 1.2 | 0         |
| 87 | GENE-11. LDSCORE REGRESSION IDENTIFIES NOVEL ASSOCIATIONS BETWEEN GLIOMA AND AUTO-IMMUNE CONDITIONS. Neuro-Oncology, 2019, 21, vi99-vi100.                                           | 1.2 | 0         |
| 88 | PATH-66. THE GENOMIC LANDSCAPE OF SPINAL CORD EPENDYMOMA. Neuro-Oncology, 2019, 21, vi158-vi158.                                                                                     | 1.2 | 0         |
| 89 | Somatic and Germline Mutational Heterogeneity in High Hyperdiploid Acute Lymphoblastic Leukemia.<br>Blood, 2016, 128, 1727-1727.                                                     | 1.4 | 0         |
| 90 | Molecular features of gliomas with high tumor mutational burden Journal of Clinical Oncology, 2020, 38, 2549-2549.                                                                   | 1.6 | 0         |

| #  | Article                                                                                                                                                                      | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91 | Long telomeres in need of a SNP: Germline contributions of telomere maintenance to glioma.<br>Neuro-Oncology, 2021, , .                                                      | 1.2 | 0         |
| 92 | EPID-09. VARIATION IN GLIOMA INCIDENCE AMONG US HISPANICS BY GEOGRAPHIC REGION OF ORIGIN.<br>Neuro-Oncology, 2021, 23, vi87-vi87.                                            | 1.2 | 0         |
| 93 | EPID-06. QUANTIFYING THE POTENTIAL PUBLIC HEALTH IMPACT OF VARICELLA ZOSTER VIRUS (VZV)<br>VACCINATION ON GLIOMA INCIDENCE. Neuro-Oncology, 2020, 22, ii79-ii79.             | 1.2 | 0         |
| 94 | COVD-25. THE PARADOXICAL EFFECTS OF COVID-19 ON CANCER CARE IN THE NEURO-ONCOLOGY SETTING.<br>Neuro-Oncology, 2020, 22, ii26-ii26.                                           | 1.2 | 0         |
| 95 | BIOM-17. BRAF MUTATION IS AN EARLY EVENT IN THE EVOLUTION OF A SUBSET OF CLIOBLASTOMAS AND IS ASSOCIATED WITH INCREASED PD-L1 EXPRESSION. Neuro-Oncology, 2020, 22, ii5-ii5. | 1.2 | 0         |
| 96 | COVD-07. THE IMPACT OF COVID-19 ON PATIENTS AND CAREGIVERS AFFECTED BY BRAIN TUMORS: THE PATIENT NAVIGATOR PERSPECTIVE. Neuro-Oncology, 2020, 22, ii22-ii22.                 | 1.2 | 0         |
| 97 | BIOM-17. DIFFERENCES IN THE IMMUNE MICROENVIRONMENT OF GLIOMAS HARBORING IDH2 VERSUS IDH1<br>MUTATIONS. Neuro-Oncology, 2021, 23, vi13-vi14.                                 | 1.2 | 0         |
| 98 | Capicua (CIC) mutations in gliomas in association with MAPK activation for exposing a potential therapeutic target Journal of Clinical Oncology, 2022, 40, 2056-2056.        | 1.6 | 0         |