List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5210012/publications.pdf Version: 2024-02-01

IFSDED I <u>A</u> I CSCAADD

#	Article	IF	CITATIONS
1	Power scaling of normal-dispersion continuum generation using higher-order modes in microstructured optical fibers. Optics Letters, 2022, 47, 698.	3.3	Ο
2	Heat Load Influence on Supermodes in Yb-Doped Four-Core Fibers. Journal of Lightwave Technology, 2021, 39, 263-269.	4.6	0
3	Quantifying the impact of pump noise on fiber-optic nonlinear processes. Journal of the Optical Society of America B: Optical Physics, 2021, 38, 1538.	2.1	Ο
4	Observation of dynamical eigenmodes induced by the moving refractive index grating of TMI in a rod amplifier. Optics Letters, 2021, 46, 5755-5758.	3.3	1
5	Nonlinear propagation in higher-order modes of microstructured optical fibers. , 2020, , .		0
6	High gain in a dual-pass rod-type fiber amplifier. Journal of the Optical Society of America B: Optical Physics, 2020, 37, 451.	2.1	7
7	Power scaling of dispersive-wave generation in higher-order optical fiber modes. Journal of the Optical Society of America B: Optical Physics, 2020, 37, 2637.	2.1	4
8	Experimental investigations of seeding mechanisms of TMI in rod fiber amplifier using spatially and temporally resolved imaging. Optics Express, 2020, 28, 26690.	3.4	7
9	Novel high-speed camera analysis of transverse mode instabilities in rod fiber amplifiers. , 2020, , .		1
10	Thermo-optic instabilities in asymmetric dual-core amplifiers. Journal of the Optical Society of America B: Optical Physics, 2020, 37, 1494.	2.1	0
11	Multimode nonlinear simulation technique having near-linear scaling with mode number in circular symmetric waveguides. Optics Letters, 2020, 45, 4160.	3.3	4
12	Thermal Effects on Modal Properties of Dual-Core Yb-Doped Fibers. Journal of Lightwave Technology, 2019, 37, 1075-1083.	4.6	8
13	Poor-man's model of hollow-core anti-resonant fibers. Journal of the Optical Society of America B: Optical Physics, 2019, 36, 69.	2.1	21
14	Static and dynamic mode instabilities in dual-core fiber amplifiers. Journal of the Optical Society of America B: Optical Physics, 2019, 36, 757.	2.1	11
15	Theory of thermo-optic instabilities in dual-core fiber amplifiers. Optics Letters, 2018, 43, 4775.	3.3	12
16	Scaling relations for soliton compression and dispersive-wave generation in tapered optical fibers. Journal of the Optical Society of America B: Optical Physics, 2018, 35, 783.	2.1	6
17	The Bowtie Effect in Cylindrical Waveguides. Journal of Lightwave Technology, 2018, 36, 3309-3317.	4.6	3
18	Spatial beam cleanup by pure Kerr processes in multimode fibers. Optics Letters, 2018, 43, 2700.	3.3	25

#	Article	IF	CITATIONS
19	Cherenkov radiation from 1550  nm pumping in tapered photonic crystal fibers. Optics Letters, 2018, 4 2744.	3, _{3.3}	3
20	Static and dynamic mode coupling in a double-pass rod-type fiber amplifier. Optics Letters, 2018, 43, 5535.	3.3	14
21	Designing fiber tapers for tunable dispersive-wave generation from agile Yb-based pump lasers. Journal of the Optical Society of America B: Optical Physics, 2018, 35, 1433.	2.1	0
22	Flexible cross-correlated (C^2) imaging method for the modal content characterization in a broad range of wavelengths. Optics Express, 2017, 25, 5521.	3.4	3
23	Nonlinearity-tailored fiber laser technology for low-noise, ultra-wideband tunable femtosecond light generation. Photonics Research, 2017, 5, 750.	7.0	18
24	Efficient simulation of multimodal nonlinear propagation in step-index fibers. Journal of the Optical Society of America B: Optical Physics, 2017, 34, 2266.	2.1	26
25	Progress in Cherenkov femtosecond fiber lasers. Journal Physics D: Applied Physics, 2016, 49, 023001.	2.8	27
26	Stain-free histopathology by programmable supercontinuum pulses. Nature Photonics, 2016, 10, 534-540.	31.4	177
27	Hollow-core fibers for high power pulse delivery. Optics Express, 2016, 24, 7103.	3.4	200
28	Static thermo-optic instability in double-pass fiber amplifiers. Optics Express, 2016, 24, 13429.	3.4	38
29	Polarization switch of four-wave mixing in large mode area hybrid photonic crystal fibers. Optics Letters, 2015, 40, 487.	3.3	15
30	Intermodal and cross-polarization four-wave mixing in large-core hybrid photonic crystal fibers. Optics Express, 2015, 23, 5954.	3.4	21
31	Large-mode-area hybrid photonic crystal fiber amplifier at 1178  nm. Optics Letters, 2015, 40, 1741.	3.3	7
32	Optical frequency standard using acetylene-filled hollow-core photonic crystal fibers. Optics Express, 2015, 23, 11227.	3.4	21
33	Impact of gain saturation on the mode instability threshold in high-power fiber amplifiers. Optics Express, 2014, 22, 11267.	3.4	69
34	Extended parametric gain range in photonic crystal fibers with strongly frequency-dependent field distributions. Optics Letters, 2014, 39, 4891.	3.3	2
35	Low-Noise Operation of All-Fiber Femtosecond Cherenkov Laser. IEEE Photonics Technology Letters, 2013, 25, 892-895.	2.5	14
36	Theoretical analysis of mode instability in high-power fiber amplifiers. Optics Express, 2013, 21, 1944.	3.4	152

#	Article	IF	CITATIONS
37	How long wavelengths can one extract from silica-core fibers?. Optics Letters, 2013, 38, 4518.	3.3	44
38	Cross-correlated imaging of single-mode photonic crystal rod fiber with distributed mode filtering. Optics Express, 2013, 21, 9215.	3.4	6
39	Estimating modal instability threshold for photonic crystal rod fiber amplifiers. Optics Express, 2013, 21, 15409.	3.4	35
40	Degenerate four wave mixing in large mode area hybrid photonic crystal fibers. Optics Express, 2013, 21, 18111.	3.4	23
41	Frequency resolved transverse mode instability in rod fiber amplifiers. Optics Express, 2013, 21, 21847.	3.4	47
42	Bright broadband coherent fiber sources emitting strongly blue-shifted resonant dispersive wave pulses. Optics Express, 2013, 21, 23188.	3.4	25
43	All-fiber femtosecond Cherenkov radiation source. Optics Letters, 2012, 37, 2769.	3.3	36
44	Thermally induced mode coupling in rare-earth doped fiber amplifiers. Optics Letters, 2012, 37, 2382.	3.3	122
45	Modeling of nonlinear propagation in fiber tapers. Journal of the Optical Society of America B: Optical Physics, 2012, 29, 3183.	2.1	12
46	Hybrid Ytterbium-doped large-mode-area photonic crystal fiber amplifier for long wavelengths. Optics Express, 2012, 20, 6010.	3.4	18
47	Optimizing single mode robustness of the distributed modal filtering rod fiber amplifier. Optics Express, 2012, 20, 7263.	3.4	50
48	Nonlinear polarization dynamics in a weakly birefringent all-normal dispersion photonic crystal fiber: toward a practical coherent fiber supercontinuum laser. Optics Express, 2012, 20, 1113.	3.4	49
49	Distributed mode filtering rod fiber amplifier delivering 292W with improved mode stability. Optics Express, 2012, 20, 5742.	3.4	122
50	Q-switching and efficient harmonic generation from a single-mode LMA photonic bandgap rod fiber laser. Optics Express, 2011, 19, 10824.	3.4	35
51	Thermo-optical effects in high-power Ytterbium-doped fiber amplifiers. Optics Express, 2011, 19, 23965.	3.4	82
52	Millijoule pulse energy second harmonic generation with single-stage photonic bandgap rod fiber laser. , 2011, , .		1
53	Optical fiber-based devices and applications. Frontiers of Optoelectronics in China, 2010, 3, 1-1.	0.2	0
54	Highly-stable monolithic femtosecond Yb-fiber laser system based on photonic crystal fibers. Optics Express, 2010, 18, 15475.	3.4	34

#	Article	IF	CITATIONS
55	Scalar generalized nonlinear SchrĶdinger equation-quantified continuum generation in an all-normal dispersion photonic crystal fiber for broadband coherent optical sources. Optics Express, 2010, 18, 27872.	3.4	28
56	Self-stabilization of a mode-locked femtosecond fiber laser using a photonic bandgap fiber. Optics Letters, 2010, 35, 913.	3.3	24
5 7	Monolithic all-PM femtosecond Yb-doped fiber laser using photonic bandgap fibers. , 2009, , .		0
58	Theory of adiabatic pressure-gradient soliton compression in hollow-core photonic bandgap fibers. Optics Letters, 2009, 34, 3710.	3.3	12
59	Avoided-crossing-based liquid-crystal photonic-bandgap notch filter. Optics Letters, 2008, 33, 986.	3.3	63
60	Degenerate four wave mixing in solid core photonic bandgap fibers. Optics Express, 2008, 16, 4059.	3.4	22
61	Spatiotemporal control of light by Bloch-mode dispersion in multi-core fibers. Optics Express, 2008, 16, 5878.	3.4	11
62	Monolithic all-PM femtosecond Yb-fiber laser stabilized with a narrow-band fiber Bragg grating and pulse-compressed in a hollow-core photonic crystal fiber. Optics Express, 2008, 16, 14004.	3.4	44
63	Electrically and mechanically induced long period gratings in liquid crystal photonic bandgap fibers. Optics Express, 2007, 15, 7901.	3.4	90
64	Integrating liquid crystal based optical devices in photonic crystal fibers. Optical and Quantum Electronics, 2007, 39, 1009-1019.	3.3	42
65	Tailoring the dispersion properties of photonic crystal fibers. Optical and Quantum Electronics, 2007, 39, 995-1008.	3.3	16
66	Tuning quadratic nonlinear photonic crystal fibers for zero group-velocity mismatch. Optics Letters, 2006, 31, 1612.	3.3	25
67	Control of the wavelength dependent thermo-optic coefficients in structured fibres. Optics Express, 2006, 14, 6428.	3.4	40
68	Microstructured Optical Fibers-Fundamentals and Applications. Journal of the American Ceramic Society, 2006, 89, 2-12.	3.8	58
69	Photonic Structures. Optics and Photonics News, 2005, 16, 36.	0.5	38
70	All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers. Optics Express, 2004, 12, 5857.	3.4	291
71	Reduction of coupling loss to photonic crystal fibers by controlled hole collapse: a numerical study. Optics Communications, 2004, 237, 431-435.	2.1	19
72	Photonic crystal fiber design for broadband directional coupling. Optics Letters, 2004, 29, 2473.	3.3	91

#	Article	IF	CITATIONS
73	Fiber Optics. Optics and Photonics News, 2004, 15, 26.	0.5	1
74	Doped photonic bandgap fibers for short-wavelength nonlinear devices. Optics Letters, 2003, 28, 783.	3.3	18
75	Chromatic dispersion in photonic crystal fibers: fast and accurate scheme for calculation. Journal of the Optical Society of America B: Optical Physics, 2003, 20, 443.	2.1	53
76	Mode areas and field-energy distribution in honeycomb photonic bandgap fibers. Journal of the Optical Society of America B: Optical Physics, 2003, 20, 2037.	2.1	59