
Christophe Bailly

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5209555/publications.pdf Version: 2024-02-01

CHRISTORIE RAILLY

#	Article	IF	CITATIONS
1	Active oxygen species and antioxidants in seed biology. Seed Science Research, 2004, 14, 93-107.	1.7	858
2	From intracellular signaling networks to cell death: the dual role of reactive oxygen species in seed physiology. Comptes Rendus - Biologies, 2008, 331, 806-814.	0.2	675
3	ROS production and protein oxidation as a novel mechanism for seed dormancy alleviation. Plant Journal, 2007, 50, 452-465.	5.7	407
4	Changes in malondialdehyde content and in superoxide dismutase, catalase and glutathione reductase activities in sunflower seeds as related to deterioration during accelerated aging. Physiologia Plantarum, 1996, 97, 104-110.	5.2	399
5	Oxidative signaling in seed germination and dormancy. Plant Signaling and Behavior, 2008, 3, 175-182.	2.4	318
6	The Mechanisms Involved in Seed Dormancy Alleviation by Hydrogen Cyanide Unravel the Role of Reactive Oxygen Species as Key Factors of Cellular Signaling during Germination Â. Plant Physiology, 2009, 150, 494-505.	4.8	256
7	Ethylene, a key factor in the regulation of seed dormancy. Frontiers in Plant Science, 2014, 5, 539.	3.6	241
8	Role of Reactive Oxygen Species in the Regulation of Arabidopsis Seed Dormancy. Plant and Cell Physiology, 2012, 53, 96-106.	3.1	238
9	Changes in malondialdehyde content and in superoxide dismutase, catalase and glutathione reductase activities in sunflower seeds as related to deterioration during accelerated aging. Physiologia Plantarum, 1996, 97, 104-110.	5.2	232
10	The signalling role of ROS in the regulation of seed germination and dormancy. Biochemical Journal, 2019, 476, 3019-3032.	3.7	204
11	Targeted mRNA Oxidation Regulates Sunflower Seed Dormancy Alleviation during Dry After-Ripening Â. Plant Cell, 2011, 23, 2196-2208.	6.6	180
12	Changes in oligosaccharide content and antioxidant enzyme activities in developing bean seeds as related to acquisition of drying tolerance and seed quality. Journal of Experimental Botany, 2001, 52, 701-708.	4.8	174
13	Sunflower seed deterioration as related to moisture content during ageing, energy metabolism and active oxygen species scavenging. Physiologia Plantarum, 2006, 128, 496-506.	5.2	169
14	Crosstalk between reactive oxygen species and hormonal signalling pathways regulates grain dormancy in barley. Plant, Cell and Environment, 2011, 34, 980-993.	5.7	163
15	Catalase is a key enzyme in seed recovery from ageing during priming. Plant Science, 2011, 181, 309-315.	3.6	161
16	Antioxidant systems in sunflower (Helianthus annuus L.) seeds as affected by priming. Seed Science Research, 2000, 10, 35-42.	1.7	139
17	Role of protein and mRNA oxidation in seed dormancy and germination. Frontiers in Plant Science, 2013, 4, 77.	3.6	136
18	Changes in activities of antioxidant enzymes and lipoxygenase during growth of sunflower seedlings from seeds of different vigour. Seed Science Research, 2002, 12, 47-55.	1.7	126

CHRISTOPHE BAILLY

#	Article	lF	CITATIONS
19	Reactive oxygen species, abscisic acid and ethylene interact to regulate sunflower seed germination. Plant, Cell and Environment, 2015, 38, 364-374.	5.7	125
20	Free radical scavenging as affected by accelerated ageing and subsequent priming in sunflower seeds. Physiologia Plantarum, 1998, 104, 646-652.	5.2	121
21	Changes in soluble carbohydrates, lipid peroxidation and antioxidant enzyme activities in the embryo during ageing in wheat grains. Journal of Cereal Science, 2008, 47, 555-565.	3.7	116
22	NADPH oxidase-dependent H2O2 production is required for salt-induced antioxidant defense in Arabidopsis thaliana. Journal of Plant Physiology, 2015, 174, 5-15.	3.5	112
23	An Endosperm-Associated Cuticle Is Required for Arabidopsis Seed Viability, Dormancy and Early Control of Germination. PLoS Genetics, 2015, 11, e1005708.	3.5	105
24	Catalase activity and expression in developing sunflower seeds as related to drying. Journal of Experimental Botany, 2004, 55, 475-483.	4.8	104
25	Release of sunflower seed dormancy by cyanide: cross-talk with ethylene signalling pathway. Journal of Experimental Botany, 2008, 59, 2241-2251.	4.8	97
26	Extracellular superoxide production, viability and redox poise in response to desiccation in recalcitrantCastanea sativaseeds. Plant, Cell and Environment, 2009, 33, 59-75.	5.7	87
27	DNA alteration and programmed cell death during ageing of sunflower seed. Journal of Experimental Botany, 2011, 62, 5003-5011.	4.8	86
28	Role of relative humidity, temperature, and water status in dormancy alleviation of sunflower seeds during dry after-ripening. Journal of Experimental Botany, 2011, 62, 627-640.	4.8	76
29	Induction of Oxidative Stress by Sunflower Phytotoxins in Germinating Mustard Seeds. Journal of Chemical Ecology, 2007, 33, 251-264.	1.8	75
30	Wheat seedlings as a model to understand desiccation tolerance and sensitivity. Physiologia Plantarum, 2004, 120, 563-574.	5.2	67
31	Analyses of Reactive Oxygen Species and Antioxidants in Relation to Seed Longevity and Germination. Methods in Molecular Biology, 2011, 773, 343-367.	0.9	66
32	Fluctuation of Arabidopsis seed dormancy with relative humidity and temperature during dry storage. Journal of Experimental Botany, 2016, 67, 119-130.	4.8	65
33	Inhibition of germination of dormant barley (<i><scp>H</scp>ordeum vulgare</i> â€ <scp>L</scp> .) grains by blue light as related to oxygen and hormonal regulation. Plant, Cell and Environment, 2014, 37, 1393-1403.	5.7	58
34	Glutathione redox state, tocochromanols, fatty acids, antioxidant enzymes and protein carbonylation in sunflower seed embryos associated with after-ripening and ageing. Annals of Botany, 2015, 116, 669-678.	2.9	58
35	The Significance of Hydrogen Sulfide for Arabidopsis Seed Germination. Frontiers in Plant Science, 2016, 7, 930.	3.6	58
36	Arabidopsis S2Lb links AtCOMPASS-like and SDG2 activity in H3K4me3 independently from histone H2B monoubiquitination. Genome Biology, 2019, 20, 100.	8.8	56

CHRISTOPHE BAILLY

#	Article	IF	CITATIONS
37	Changes in wheat seed germination ability, soluble carbohydrate and antioxidant enzyme activities in the embryo during the desiccation phase of maturation. Journal of Cereal Science, 2006, 43, 175-182.	3.7	55
38	Osmoconditioning reduces physiological and biochemical damage induced by chilling in soybean seeds. Physiologia Plantarum, 2001, 111, 473-482.	5.2	49
39	Germination Potential of Dormant and Nondormant Arabidopsis Seeds Is Driven by Distinct Recruitment of Messenger RNAs to Polysomes. Plant Physiology, 2015, 168, 1049-1065.	4.8	49
40	5′ to 3′ mRNA Decay Contributes to the Regulation of Arabidopsis Seed Germination by Dormancy. Plant Physiology, 2017, 173, 1709-1723.	4.8	46
41	Is Gene Transcription Involved in Seed Dry After-Ripening?. PLoS ONE, 2014, 9, e86442.	2.5	38
42	Translatome profiling in dormant and nondormant sunflower (<i>Helianthus annuus</i>) seeds highlights postâ€ŧranscriptional regulation of germination. New Phytologist, 2014, 204, 864-872.	7.3	36
43	Organization of lipid reserves in cotyledons of primed and aged sunflower seeds. Planta, 2005, 222, 397-407.	3.2	35
44	Retrograde signalling from the mitochondria to the nucleus translates the positive effect of ethylene on dormancy breaking of <i>Arabidopsis thaliana</i> seeds. New Phytologist, 2021, 229, 2192-2205.	7.3	34
45	Integrating proteomics and enzymatic profiling to decipher seed metabolism affected by temperature in seed dormancy and germination. Plant Science, 2018, 269, 118-125.	3.6	33
46	Awake1, an ABC-Type Transporter, Reveals an Essential Role for Suberin in the Control of Seed Dormancy. Plant Physiology, 2017, 174, 276-283.	4.8	32
47	Chilling temperature remodels phospholipidome of Zea mays seeds during imbibition. Scientific Reports, 2017, 7, 8886.	3.3	31
48	The <scp>MPK</scp> 8â€ <scp>TCP</scp> 14 pathway promotes seed germination in Arabidopsis. Plant Journal, 2019, 100, 677-692.	5.7	29
49	ROS Signaling in Seed Dormancy Alleviation. Plant Signaling and Behavior, 2007, 2, 362-364.	2.4	26
50	Induction of secondary dormancy by hypoxia in barley grains and its hormonal regulation. Journal of Experimental Botany, 2013, 64, 2017-2025.	4.8	26
51	The effects of abscisic acid and methyl jasmonate on 1-aminocyclopropane 1-carboxylic acid conversion to ethylene in hypocotyl segments of sunflower seedlings, and their control by calcium and calmodulin. Plant Growth Regulation, 1992, 11, 349-355.	3.4	22
52	Oxidative signalling in seed germination and early seedling growth: an emerging role for ROS trafficking and inter-organelle communication. Biochemical Journal, 2021, 478, 1977-1984.	3.7	21
53	Changes in Lipid Status and Glass Properties in Cotyledons of Developing Sunflower Seeds. Plant and Cell Physiology, 2006, 47, 818-828.	3.1	20
54	Handing off iron to the next generation: how does it get into seeds and what for?. Biochemical Journal, 2020, 477, 259-274.	3.7	20

CHRISTOPHE BAILLY

#	Article	IF	CITATIONS
55	Revisiting the Role of Ethylene and N-End Rule Pathway on Chilling-Induced Dormancy Release in Arabidopsis Seeds. International Journal of Molecular Sciences, 2018, 19, 3577.	4.1	18
56	Intracellular reactive oxygen species trafficking participates in seed dormancy alleviation in Arabidopsis seeds. New Phytologist, 2022, 234, 850-866.	7.3	16
57	Water content: a key factor of the induction of secondary dormancy in barley grains as related to <scp>ABA</scp> metabolism. Physiologia Plantarum, 2013, 148, 284-296.	5.2	15
58	One Way to Achieve Germination: Common Molecular Mechanism Induced by Ethylene and After-Ripening in Sunflower Seeds. International Journal of Molecular Sciences, 2018, 19, 2464.	4.1	15
59	Re-localization of hormone effectors is associated with dormancy alleviation by temperature and after-ripening in sunflower seeds. Scientific Reports, 2019, 9, 4861.	3.3	14
60	A multiscale approach reveals regulatory players of water stress responses in seeds during germination. Plant, Cell and Environment, 2020, 43, 1300-1313.	5.7	14
61	Regulatory actors and alternative routes for Arabidopsis seed germination are revealed using a pathwayâ€based analysis of transcriptomic datasets. Plant Journal, 2019, 99, 163-175.	5.7	13
62	Effects of agroclimatic conditions on sunflower seed dormancy at harvest. European Journal of Agronomy, 2021, 124, 126209.	4.1	13
63	Microtubule self-organisation during seed germination in Arabidopsis. BMC Biology, 2020, 18, 44.	3.8	10
64	A Correlative Study of Sunflower Seed Vigor Components as Related to Genetic Background. Plants, 2020, 9, 386.	3.5	9
65	The Histone Chaperone HIRA Is a Positive Regulator of Seed Germination. International Journal of Molecular Sciences, 2021, 22, 4031.	4.1	9
66	Determination of Protein Carbonylation and Proteasome Activity in Seeds. Methods in Molecular Biology, 2016, 1450, 205-212.	0.9	7
67	Role of ethylene and proteolytic Nâ€degron pathway in the regulation of <i>Arabidopsis</i> seed dormancy. Journal of Integrative Plant Biology, 2021, 63, 2110-2122.	8.5	7
68	A New Role for Plastid Thioredoxins in Seed Physiology in Relation to Hormone Regulation. International Journal of Molecular Sciences, 2021, 22, 10395.	4.1	7
69	Maternal drought stress induces abiotic stress tolerance to the progeny at the germination stage in sunflower. Environmental and Experimental Botany, 2022, , 104939.	4.2	7
70	Are Methionine Sulfoxide-Containing Proteins Related to Seed Longevity? A Case Study of Arabidopsis thaliana Dry Mature Seeds Using Cyanogen Bromide Attack and Two-Dimensional-Diagonal Electrophoresis. Plants, 2022, 11, 569.	3.5	2
71	In-Depth Proteomic Analysis of the Secondary Dormancy Induction by Hypoxia or High Temperature in Barley Grains. Plant and Cell Physiology, 2022, , .	3.1	1
72	Dynamics of Protein Phosphorylation during Arabidopsis Seed Germination. International Journal of Molecular Sciences, 2022, 23, 7059.	4.1	1

#	Article	IF	CITATIONS
73	Physiological and Environmental Regulation of Seed Germination: From Signaling Events to Molecular Responses. International Journal of Molecular Sciences, 2022, 23, 4839.	4.1	0