Daniel Batlle

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5209542/publications.pdf

Version: 2024-02-01

47006 42399 8,991 128 47 92 citations h-index g-index papers 131 131 131 10348 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Increase in Nocturnal Blood Pressure and Progression to Microalbuminuria in Type 1 Diabetes. New England Journal of Medicine, 2002, 347, 797-805.	27.0	667
2	Acute Kidney Injury in COVID-19: Emerging Evidence of a Distinct Pathophysiology. Journal of the American Society of Nephrology: JASN, 2020, 31, 1380-1383.	6.1	453
3	Glomerular Localization and Expression of Angiotensin-Converting Enzyme 2 and Angiotensin-Converting Enzyme. Journal of the American Society of Nephrology: JASN, 2006, 17, 3067-3075.	6.1	439
4	Prevalence, treatment, and control of hypertension in chronic hemodialysis patients in the United States. American Journal of Medicine, 2003, 115, 291-297.	1.5	416
5	Renin-Angiotensin System Blockers and the COVID-19 Pandemic. Hypertension, 2020, 75, 1382-1385.	2.7	412
6	Soluble angiotensin-converting enzyme 2: a potential approach for coronavirus infection therapy?. Clinical Science, 2020, 134, 543-545.	4.3	369
7	Paricalcitol versus calcitriol in the treatment of secondary hyperparathyroidism. Kidney International, 2003, 63, 1483-1490.	5.2	331
8	Antiproteinuric effect of oral paricalcitol in chronic kidney disease. Kidney International, 2005, 68, 2823-2828.	5.2	326
9	Targeting the Degradation of Angiotensin II With Recombinant Angiotensin-Converting Enzyme 2. Hypertension, 2010, 55, 90-98.	2.7	273
10	ACE and ACE2 Activity in Diabetic Mice. Diabetes, 2006, 55, 2132-2139.	0.6	270
11	Increased ACE 2 and Decreased ACE Protein in Renal Tubules From Diabetic Mice. Hypertension, 2004, 43, 1120-1125.	2.7	206
12	Paricalcitol Capsule for the Treatment of Secondary Hyperparathyroidism in Stages 3 and 4 CKD. American Journal of Kidney Diseases, 2006, 47, 263-276.	1.9	198
13	Localization of ACE2 in the renal vasculature: amplification by angiotensin II type 1 receptor blockade using telmisartan. American Journal of Physiology - Renal Physiology, 2009, 296, F398-F405.	2.7	188
14	Genetic causes and mechanisms of distal renal tubular acidosis. Nephrology Dialysis Transplantation, 2012, 27, 3691-3704.	0.7	163
15	Ang II (Angiotensin II) Conversion to Angiotensin-(1-7) in the Circulation Is POP (Prolyloligopeptidase)-Dependent and ACE2 (Angiotensin-Converting Enzyme 2)-Independent. Hypertension, 2020, 75, 173-182.	2.7	155
16	Interaction of SARS-CoV-2 and Other Coronavirus With ACE (Angiotensin-Converting Enzyme)-2 as Their Main Receptor. Hypertension, 2020, 76, 1339-1349.	2.7	147
17	Proximal renal tubular acidosis: a not so rare disorder of multiple etiologies. Nephrology Dialysis Transplantation, 2012, 27, 4273-4287.	0.7	131
18	Angiotensin II Activation of Cyclin D1-dependent Kinase Activity. Journal of Biological Chemistry, 1996, 271, 22570-22577.	3.4	130

#	Article	IF	Citations
19	High CO2 Levels Impair Alveolar Epithelial Function Independently of pH. PLoS ONE, 2007, 2, e1238.	2.5	108
20	Angiotensin-converting enzyme 2: enhancing the degradation of angiotensin II as a potential therapy for diabetic nephropathy. Kidney International, 2012, 81, 520-528.	5. 2	105
21	ACE2 alterations in kidney disease. Nephrology Dialysis Transplantation, 2013, 28, 2687-2697.	0.7	105
22	Angiotensin-Converting Enzyme 2–Independent Action of Presumed Angiotensin-Converting Enzyme 2 Activators. Hypertension, 2014, 63, 774-782.	2.7	101
23	Podocyte-specific overexpression of human angiotensin-converting enzyme 2 attenuates diabetic nephropathy in mice. Kidney International, 2012, 82, 292-303.	5.2	98
24	Hyperkalemic hyperchloremic metabolic acidosis in sickle cell hemoglobinopathies. American Journal of Medicine, 1982, 72, 188-192.	1.5	97
25	ACE2 and Diabetes: ACE of ACEs?. Diabetes, 2010, 59, 2994-2996.	0.6	95
26	Kidney and Lung ACE2 Expression after an ACE Inhibitor or an Ang II Receptor Blocker: Implications for COVID-19. Journal of the American Society of Nephrology: JASN, 2020, 31, 1941-1943.	6.1	95
27	Novel ACE2-Fc chimeric fusion provides long-lasting hypertension control and organ protection in mouse models of systemic renin angiotensin system activation. Kidney International, 2018, 94, 114-125.	5.2	94
28	Sodium ferric gluconate complex in hemodialysis patients. II. Adverse reactions in iron dextran-sensitive and dextran-tolerant patients. Kidney International, 2003, 63, 217-224.	5.2	93
29	Circulating ACE2-expressing extracellular vesicles block broad strains of SARS-CoV-2. Nature Communications, 2022, 13, 405.	12.8	92
30	Murine Recombinant Angiotensin-Converting Enzyme 2. Hypertension, 2012, 60, 730-740.	2.7	89
31	Hypoxia Stimulates Osteopontin Expression and Proliferation of Cultured Vascular Smooth Muscle Cells. Diabetes, 2001, 50, 1482-1490.	0.6	83
32	A Novel Soluble ACE2 Variant with Prolonged Duration of Action Neutralizes SARS-CoV-2 Infection in Human Kidney Organoids. Journal of the American Society of Nephrology: JASN, 2021, 32, 795-803.	6.1	82
33	Sound Science before Quick Judgement Regarding RAS Blockade in COVID-19. Clinical Journal of the American Society of Nephrology: CJASN, 2020, 15, 714-716.	4.5	74
34	Hereditary Distal Renal Tubular Acidosis: New Understandings. Annual Review of Medicine, 2001, 52, 471-484.	12.2	69
35	Pharmacologic modulation of ACE2 expression. Current Hypertension Reports, 2008, 10, 410-4.	3.5	69
36	Distal renal tubular acidosis with intact capacity to lower urinary pH. American Journal of Medicine, 1982, 72, 751-758.	1.5	65

#	Article	IF	CITATIONS
37	Biological Variability of Estimated GFR and Albuminuria in CKD. American Journal of Kidney Diseases, 2018, 72, 538-546.	1.9	62
38	Regulation of urinary ACE2 in diabetic mice. American Journal of Physiology - Renal Physiology, 2013, 305, F600-F611.	2.7	60
39	Evaluation of Renal Hypoxia in Diabetic Mice by BOLD MRI. Investigative Radiology, 2010, 45, 819-822.	6.2	59
40	ACE2 deficiency increases NADPH-mediated oxidative stress in the kidney. Physiological Reports, 2014, 2, e00264.	1.7	58
41	Distal nephron function in patients receiving chronic lithium therapy. Kidney International, 1982, 21, 477-485.	5.2	57
42	Na+/H+ exchange activity and NHE-3 expression in renal tubules from the spontaneously hypertensive rat. Kidney International, 2002, 62, 157-165.	5.2	56
43	Cuffless Blood Pressure Monitoring. Clinical Journal of the American Society of Nephrology: CJASN, 2020, 15, 1531-1538.	4.5	56
44	Evidence For and Against Direct Kidney Infection by SARS-CoV-2 in Patients with COVID-19. Clinical Journal of the American Society of Nephrology: CJASN, 2021, 16, 1755-1765.	4.5	54
45	Osteopontin mediates hypoxia-induced proliferation of cultured mesangial cells: Role of PKC and p38 MAPK. Kidney International, 2000, 58, 691-700.	5.2	52
46	Distal Renal Tubular Acidosis and the Potassium Enigma. Seminars in Nephrology, 2006, 26, 471-478.	1.6	52
47	Distal Renal Tubular Acidosis: Pathogenesis and Classification. American Journal of Kidney Diseases, 1982, 1, 328-344.	1.9	51
48	Angiotensin-converting enzyme 2 amplification limitedÂto the circulation does not protect miceÂfromÂdevelopment of diabetic nephropathy. Kidney International, 2017, 91, 1336-1346.	5.2	49
49	Apelin and ACE2 in cardiovascular disease. Current Opinion in Investigational Drugs, 2010, 11, 273-82.	2.3	49
50	Acid-Base and Potassium Disorders in Liver Disease. Seminars in Nephrology, 2006, 26, 466-470.	1.6	46
51	Severe Acute Respiratory Syndrome Coronavirus 2, COVID-19, and the Renin-Angiotensin System. Hypertension, 2020, 76, 1350-1367.	2.7	46
52	Effect of calcium-sensing receptor activation in models of autosomal recessive or dominant polycystic kidney disease. Nephrology Dialysis Transplantation, 2008, 24, 526-534.	0.7	45
53	Effect of Insulin on ACE2 Activity and Kidney Function in the Non-Obese Diabetic Mouse. PLoS ONE, 2014, 9, e84683.	2.5	45
54	Hypokalemic Distal Renal Tubular Acidosis. Advances in Chronic Kidney Disease, 2018, 25, 303-320.	1.4	43

#	Article	IF	CITATIONS
55	The ACE2â€deficient mouse: A model for a cytokine stormâ€driven inflammation. FASEB Journal, 2020, 34, 10505-10515.	0.5	41
56	Underlying defects in distal renal tubular acidosis: New understandings. American Journal of Kidney Diseases, 1996, 27, 896-915.	1.9	40
57	Prolylcarboxypeptidase deficiency is associated with increased blood pressure, glomerular lesions, and cardiac dysfunction independent of altered circulating and cardiac angiotensin II. Journal of Molecular Medicine, 2017, 95, 473-486.	3.9	40
58	Novel Variants of Angiotensin Converting Enzyme-2 of Shorter Molecular Size to Target the Kidney Renin Angiotensin System. Biomolecules, 2019, 9, 886.	4.0	39
59	Angiotensinâ€converting enzyme 2 and the kidney. Experimental Physiology, 2008, 93, 549-556.	2.0	38
60	Angiotensinogen as a biomarker of acute kidney injury. CKJ: Clinical Kidney Journal, 2017, 10, 759-768.	2.9	37
61	Growth phenotype of cultured skin fibroblasts from IDDM patients with and without nephropathy and overactivity of the Na+/H+ antiporter. Kidney International, 1996, 50, 1684-1693.	5.2	36
62	Urinary Renin in Patients and Mice With Diabetic Kidney Disease. Hypertension, 2019, 74, 83-94.	2.7	33
63	An update on ACE2 amplification and its therapeutic potential. Acta Physiologica, 2021, 231, e13513.	3.8	33
64	Urine RAS components in mice and people with type 1 diabetes and chronic kidney disease. American Journal of Physiology - Renal Physiology, 2017, 313, F487-F494.	2.7	32
65	New aspects of the renin–angiotensin system: angiotensin-converting enzyme 2 – a potential target for treatment of hypertension and diabetic nephropathy. Current Opinion in Nephrology and Hypertension, 2008, 17, 250-257.	2.0	30
66	Proximal renal tubular acidosis with and without Fanconi syndrome. Kidney Research and Clinical Practice, 2019, 38, 267-281.	2.2	30
67	A subdepressor low dose of ramipril lowers urinary protein excretion without increasing plasma potassium. American Journal of Kidney Diseases, 1999, 33, 450-457.	1.9	29
68	Predominance of AT1 Blockade Over Mas–Mediated Angiotensin-(1–7) Mechanisms in the Regulation of Blood Pressure and Renin–Angiotensin System in mRen2.Lewis Rats. American Journal of Hypertension, 2013, 26, 583-590.	2.0	29
69	Plasma and Kidney Angiotensin Peptides: Importance of the Aminopeptidase A/Angiotensin III Axis. American Journal of Hypertension, 2015, 28, 1418-1426.	2.0	28
70	Renal Tubular Acidosis. Medical Clinics of North America, 1983, 67, 859-878.	2.5	27
71	A Novel Soluble ACE2 Protein Provides Lung and Kidney Protection in Mice Susceptible to Lethal SARS-CoV-2 Infection. Journal of the American Society of Nephrology: JASN, 2022, 33, 1293-1307.	6.1	26
72	Clinical and cellular markers of diabetic nephropathy. Kidney International, 2003, 63, 2319-2330.	5.2	25

#	Article	IF	CITATIONS
73	The Urine Anion Gap in Context. Clinical Journal of the American Society of Nephrology: CJASN, 2018, 13, 195-197.	4.5	25
74	Hyperkalemic Forms of Renal Tubular Acidosis: Clinical and Pathophysiological Aspects. Advances in Chronic Kidney Disease, 2018, 25, 321-333.	1.4	25
75	Parathyroid hormone is not anticalciuric during chronic metabolic acidosis. Kidney International, 1982, 22, 264-271.	5.2	24
76	Angiotensin II and Renal Tubular Ion Transport. Scientific World Journal, The, 2005, 5, 680-690.	2.1	24
77	Acute Renal Failure from Adulteration of Milk with Melamine. Scientific World Journal, The, 2008, 8, 974-975.	2.1	24
78	Cross-Disciplinary Biomarkers Research. Clinical Journal of the American Society of Nephrology: CJASN, 2015, 10, 894-902.	4.5	24
79	Spherical nucleic acids as an infectious disease vaccine platform. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2119093119.	7.1	20
80	Kidney Vacuolar H+-ATPase: Physiology and Regulation. Seminars in Nephrology, 2006, 26, 361-374.	1.6	19
81	Kidney Angiotensin in Cardiovascular Disease: Formation and Drug Targeting. Pharmacological Reviews, 2022, 74, 462-505.	16.0	18
82	Angiotensin-converting enzyme 2: Possible role in hypertension and kidney disease. Current Hypertension Reports, 2008, 10, 70-77.	3.5	17
83	A Fluorometric Method of Measuring Carboxypeptidase Activities for Angiotensin II and Apelin-13. Scientific Reports, 2017, 7, 45473.	3.3	17
84	Evidence in favor of the essentiality of human cell membrane-bound ACE2 and against soluble ACE2 for SARS-CoV-2 infectivity. Cell, 2022, 185, 1837-1839.	28.9	17
85	Comorbidity and Cardiovascular Risk Factors in Patients With Chronic Kidney Disease. Seminars in Nephrology, 2002, 22, 494-506.	1.6	16
86	Metabolic Acidosis or Respiratory Alkalosis? Evaluation of a Low Plasma Bicarbonate Using the Urine Anion Gap. American Journal of Kidney Diseases, 2017, 70, 440-444.	1.9	16
87	Angiotensin II and Angiotensin-(1-7) Effects on Free Cytosolic Sodium, Intracellular pH, and the Na ⁺ -H ⁺ Antiporter in Vascular Smooth Muscle. Hypertension, 1996, 27, 72-78.	2.7	16
88	Angiotensin II Increases H + -ATPase B1 Subunit Expression in Medullary Collecting Ducts. Hypertension, 2005, 45, 818-823.	2.7	14
89	Reduced plasma ACE2 activity in dialysis patients: another piece in the conundrum of factors involved in hypertension and cardiovascular morbidity?. Nephrology Dialysis Transplantation, 2013, 28, 2200-2202.	0.7	14
90	ACE2, the kidney and the emergence of COVID-19 two decades after ACE2 discovery. Clinical Science, 2020, 134, 2791-2805.	4.3	14

#	Article	IF	CITATIONS
91	Potential benefits of alkali therapy to prevent GFR loss: time for a palatable †solution†for the management of CKD. Kidney International, 2010, 78, 1065-1067.	5.2	13
92	Apelinergic system in the kidney: implications for diabetic kidney disease. Physiological Reports, 2018, 6, e13939.	1.7	13
93	Cultured skin fibroblasts as an in vitro model to assess phenotypic features in subjects with diabetic nephropathy. American Journal of Kidney Diseases, 2001, 38, 646-648.	1.9	12
94	Predicting the development of diabetic nephropathy and its progression. Advances in Chronic Kidney Disease, 2005, 12, 202-211.	1.4	12
95	The Colon as the Potassium Target: Entering the Colonic Age of Hyperkalemia Treatment?. EBioMedicine, 2015, 2, 1562-1563.	6.1	12
96	Snapshot Hemodynamics and Clinical Outcomes in Hypertension. Hypertension, 2016, 67, 270-271.	2.7	12
97	Cyclophilins A and B oppositely regulate renal tubular epithelial cell phenotype. Journal of Molecular Cell Biology, 2020, 12, 499-514.	3.3	12
98	Nocturnal hypertension: Will control of nighttime blood pressure prevent progression of diabetic renal disease?. Current Hypertension Reports, 2004, 6, 393-399.	3.5	11
99	Urinary Angiotensinogen: A Promising Biomarker of AKI Progression in Acute Decompensated Heart Failure: What Does It Mean?. Clinical Journal of the American Society of Nephrology: CJASN, 2016, 11, 1515-1517.	4.5	11
100	Urinary angiotensinogen antedates the development of stage 3 CKD in patients with type 1 diabetes mellitus. Physiological Reports, 2019, 7, e14242.	1.7	10
101	Angiotensin-(1-7) for diabetic kidney disease: better than an angiotensin-converting enzyme inhibitor alone?. Kidney International, 2019, 96, 815-817.	5.2	9
102	Temporal profile of serum-induced S-phase entry and retinoblastoma protein phosphorylation in human skin fibroblasts. Kidney International, 1999, 56, 1282-1285.	5.2	7
103	Angiotensins and the Heart. Hypertension, 2015, 66, 260-262.	2.7	7
104	Circadian changes in blood pressure and their relationships to the development of microalbuminuria in type 1 diabetic patients. Current Diabetes Reports, 2002, 2, 539-544.	4.2	6
105	Emerging importance of ACE2 in external stratified epithelial tissues. Molecular and Cellular Endocrinology, 2021, 529, 111260.	3.2	6
106	Potential SARS-CoV-2 kidney infection and paths to injury. Nature Reviews Nephrology, 2022, 18, 275-276.	9.6	6
107	The Application of High Density Microarray for Analysis of Mitogenic Signaling and Cell-Cycle in the Adrenal. Endocrine Research, 2000, 26, 807-823.	1.2	5
108	Vascular Angiotensin-Converting Enzyme 2. Circulation Research, 2010, 107, 822-824.	4.5	5

#	Article	IF	CITATIONS
109	Single-cell RNA profiling of glomerular cells in diabetic kidney: a step forward for understanding diabetic nephropathy. Annals of Translational Medicine, 2019, 7, S340-S340.	1.7	5
110	Effect of Sodium Zirconium Cyclosilicate on Serum Potassium and Bicarbonate in Patients with Hyperkalemia and Metabolic Acidosis Associated with Chronic Kidney Disease: Rationale and Design of the NEUTRALIZE Study. Nephron, 2022, 146, 599-609.	1.8	5
111	Proximal Renal Tubular Acidosis and Hypophosphatemia Induced by Arginine. Advances in Experimental Medicine and Biology, 1982, 151, 239-249.	1.6	4
112	Rigor before speculation in COVID-19 therapy. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2020, 318, L1027-L1028.	2.9	3
113	Revisiting the renin-angiotensin system. Molecular and Cellular Endocrinology, 2021, 529, 111268.	3.2	3
114	Progressive Hypertension and Severe Left Ventricular Outflow Tract Obstruction. Hypertension, 2019, 74, 1216-1225.	2.7	2
115	Knockout of aminopeptidase A in mice causes functional alterations and morphological glomerular basement membrane changes in the kidneys. Kidney International, 2021, 99, 900-913.	5.2	2
116	CONNed in Pregnancy. Hypertension, 2021, 78, 241-249.	2.7	2
117	Guest editorial: Diabetic kidney disease. Advances in Chronic Kidney Disease, 2005, 12, 126-127.	1.4	1
118	Physiologic Principles in the Clinical Evaluation of Electrolyte, Water, and Acid-Base Disorders. , $2008, 2113-2141.$		1
119	Physiologic Principles in the Clinical Evaluation of Electrolyte, Water, and Acid–Base Disorders. , 2013, , 2477-2511.		1
120	The Use of Bedside Urinary Parameters in the Evaluation of Metabolic Acidosis., 2016,, 39-51.		1
121	COVID-19 and its impact on the kidney and the nephrology community. CKJ: Clinical Kidney Journal, 2021, 14, i1-i5.	2.9	1
122	Serum potassium changes during hypothermia and rewarming: a case series and hypothesis on the mechanism. CKJ: Clinical Kidney Journal, 2023, 16, 827-834.	2.9	1
123	A functional analysis of angiotensin II targets through genome wide surveys. American Journal of Hypertension, 2001, 14, A147-A148.	2.0	0
124	Carlos Margarit-In Memoriam, 1950-2005. Scientific World Journal, The, 2006, 6, 318-352.	2.1	0
125	Renal Tubular Acidosis and the Nephrology Teaching Paradigm. Advances in Chronic Kidney Disease, 2018, 25, 301-302.	1.4	0
126	SuO007CYCLOPHILINS A AND B OPPOSITELY REGULATE RENAL TUBULAR EPITHELIAL CELL PHENOTYPE. Nephrology Dialysis Transplantation, 2019, 34, .	0.7	0

#	Article	IF	CITATIONS
127	Authors' Reply. Journal of the American Society of Nephrology: JASN, 2020, 31, 1918-1919.	6.1	O
128	Tribute to Lewis Landsberg: A Giant of Academic Medicine. Hypertension, 2022, 79, 291-292.	2.7	0