Jianqin Lu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5208931/publications.pdf

Version: 2024-02-01

304743 526287 1,943 27 22 27 citations h-index g-index papers 28 28 28 3279 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Tumor-Associated Fibroblast-Targeting Nanoparticles for Enhancing Solid Tumor Therapy: Progress and Challenges. Molecular Pharmaceutics, 2021, 18, 2889-2905.	4.6	19
2	Immunogenic camptothesome nanovesicles comprising sphingomyelin-derived camptothecin bilayers for safe and synergistic cancer immunochemotherapy. Nature Nanotechnology, 2021, 16, 1130-1140.	31.5	84
3	Self-assembling prodrug nanotherapeutics for synergistic tumor targeted drug delivery. Acta Biomaterialia, 2020, 111, 20-28.	8.3	41
4	The Crystallinity and Aspect Ratio of Cellulose Nanomaterials Determine Their Proâ€Inflammatory and Immune Adjuvant Effects In Vitro and In Vivo. Small, 2019, 15, e1901642.	10.0	48
5	Use of Polymeric Nanoparticle Platform Targeting the Liver To Induce Treg-Mediated Antigen-Specific Immune Tolerance in a Pulmonary Allergen Sensitization Model. ACS Nano, 2019, 13, 4778-4794.	14.6	78
6	Development of self-assembled multi-arm polyrotaxanes nanocarriers for systemic plasmid delivery in vivo. Biomaterials, 2019, 192, 416-428.	11.4	36
7	Improved Efficacy and Reduced Toxicity Using a Custom-Designed Irinotecan-Delivering Silicasome for Orthotopic Colon Cancer. ACS Nano, 2019, 13, 38-53.	14.6	87
8	Breast Cancer Chemo-immunotherapy through Liposomal Delivery of an Immunogenic Cell Death Stimulus Plus Interference in the IDO-1 Pathway. ACS Nano, 2018, 12, 11041-11061.	14.6	200
9	Toxicological Profiling of Highly Purified Singleâ€Walled Carbon Nanotubes with Different Lengths in the Rodent Lung and <i>Escherichia Coli</i> . Small, 2018, 14, e1703915.	10.0	21
10	Pro-Inflammatory and Pro-Fibrogenic Effects of Ionic and Particulate Arsenide and Indium-Containing Semiconductor Materials in the Murine Lung. ACS Nano, 2017, 11, 1869-1883.	14.6	19
11	Targeted drug delivery using iRGD peptide for solid cancer treatment. Molecular Systems Design and Engineering, 2017, 2, 370-379.	3.4	42
12	Nano-enabled pancreas cancer immunotherapy using immunogenic cell death and reversing immunosuppression. Nature Communications, 2017, 8, 1811.	12.8	360
13	The self-assembling camptothecin-tocopherol prodrug: An effective approach for formulating camptothecin. Biomaterials, 2015, 62, 176-187.	11.4	61
14	Hybrid nanoparticles for combination therapy of cancer. Journal of Controlled Release, 2015, 219, 224-236.	9.9	113
15	Fmoc-Conjugated PEG-Vitamin E2 Micelles for Tumor-Targeted Delivery of Paclitaxel: Enhanced Drug-Carrier Interaction and Loading Capacity. AAPS Journal, 2014, 16, 1282-1291.	4.4	17
16	An improved d-α-tocopherol-based nanocarrier for targeted delivery of doxorubicin with reversal of multidrug resistance. Journal of Controlled Release, 2014, 196, 272-286.	9.9	57
17	Design and Evaluation of a PEGylated Lipopeptide Equipped with Drug-Interactive Motifs as an Improved Drug Carrier. AAPS Journal, 2014, 16, 114-124.	4.4	25
18	Targeted Delivery of Anticancer Agents via a Dual Function Nanocarrier with an Interfacial Drug-Interactive Motif. Biomacromolecules, 2014, 15, 4326-4335.	5.4	20

#	Article	IF	CITATIONS
19	Targeted Delivery of Doxorubicin by Folic Acid-Decorated Dual Functional Nanocarrier. Molecular Pharmaceutics, 2014, 11, 4164-4178.	4.6	90
20	Targeted Delivery of Curcumin to Tumors via PEG-Derivatized FTS-Based Micellar System. AAPS Journal, 2014, 16, 600-608.	4.4	27
21	A PEG-Fmoc conjugate as a nanocarrier for paclitaxel. Biomaterials, 2014, 35, 7146-7156.	11.4	52
22	Nanoassembly of Surfactants with Interfacial Drug-Interactive Motifs as Tailor-Designed Drug Carriers. Molecular Pharmaceutics, 2013, 10, 187-198.	4.6	40
23	miR-122 regulates collagen production via targeting hepatic stellate cells and suppressing P4HA1 expression. Journal of Hepatology, 2013, 58, 522-528.	3.7	157
24	PEG-Farnesylthiosalicylate Conjugate as a Nanomicellar Carrier for Delivery of Paclitaxel. Bioconjugate Chemistry, 2013, 24, 464-472.	3.6	46
25	Design and Characterization of PEG-Derivatized Vitamin E as a Nanomicellar Formulation for Delivery of Paclitaxel. Molecular Pharmaceutics, 2013, 10, 2880-2890.	4.6	56
26	PEG-derivatized embelin as a nanomicellar carrier for delivery of paclitaxel to breast and prostate cancers. Biomaterials, 2013, 34, 1591-1600.	11.4	93
27	PEG-Derivatized Embelin as a Dual Functional Carrier for the Delivery of Paclitaxel. Bioconjugate Chemistry, 2012, 23, 1443-1451.	3.6	54