R Daniel Johnson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/52084/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Influence of counteranion and humidity on the thermal, mechanical and conductive properties of covalently crosslinked ionenes. Polymer, 2021, 222, 123641.	3.8	5
2	Self-healing behaviour of furan–maleimide poly(ionic liquid) covalent adaptable networks. Polymer Chemistry, 2020, 11, 5321-5326.	3.9	12
3	Covalently Crosslinked 1,2,3-Triazolium-Containing Polyester Networks: Thermal, Mechanical, and Conductive Properties. ACS Omega, 2018, 3, 13442-13453.	3.5	18

Influence of Anion and Crosslink Density on the Ionic Conductivity of $1,2,3\hat{a}\in T$ riazolium $\hat{a}\in B$ ased Poly(ionic) Tj ETQq0.0 0 rgBT/Overlock

•			
5	¹ H NMR Study of "Host–Guestâ€Interactions of Micellar Assemblies from Amphiphilic Invertible Polymers and Peptides. Macromolecular Chemistry and Physics, 2017, 218, 1700344.	2.2	8
6	Correlating the potentiometric selectivity of cyclosporin-based electrodes with binding patterns obtained from electrospray ionization-mass spectrometry. Analyst, The, 2017, 142, 3241-3249.	3.5	2
7	Thermal, mechanical and conductive properties of imidazolium-containing thiol-ene poly(ionic liquid) networks. Polymer, 2016, 100, 1-9.	3.8	34
8	Chemical creativity with 3D printing. Nature Chemistry, 2012, 4, 338-339.	13.6	28
9	Spectroscopic behavior of fluorescein as a constituent anion in a phosphonium-based ionic liquid material. Materials Chemistry and Physics, 2012, 132, 239-243.	4.0	5
10	Behavior of capillary valves in centrifugal microfluidic devices prepared by three-dimensional printing. Microfluidics and Nanofluidics, 2011, 10, 877-888.	2.2	66
11	Anion-selective electrodes based on ionic liquid membranes: effect of ionic liquid anion on observed response. Analytical and Bioanalytical Chemistry, 2011, 400, 3025-3033.	3.7	15
12	Microfluidic ion-sensing devices. Analytica Chimica Acta, 2008, 613, 20-30.	5.4	32
13	Ionophore-based ion-selective potentiometric and optical sensors. Analytical and Bioanalytical Chemistry, 2003, 376, 328-341.	3.7	134
14	Electronic Effects on the Selectivity of Mercuracarborand Ionophores in Ion-Selective Electrodes and Membrane Formulations for Their Use in High Protein Concentration Environments. Electroanalysis, 2003, 15, 1244-1250.	2.9	10
15	Fluorescent Ion-Selective Optode Membranes Incorporated onto a Centrifugal Microfluidics Platform. Analytical Chemistry, 2002, 74, 5569-5575.	6.5	77
16	Improving the Blood Compatibility of Ion-Selective Electrodes by Employing Poly(MPC-co-BMA), a Copolymer Containing Phosphorylcholine, as a Membrane Coating. Analytical Chemistry, 2002, 74, 3644-3648.	6.5	42
17	Polymeric Membrane Ion-Selective Electrodes Based on Molecular Asterisk Ionophores. Electroanalysis, 2002, 14, 1419-1425.	2.9	10
18	Development of a Fully Integrated Analysis System for Ions Based on Ion-Selective Optodes and Centrifugal Microfluidics. Analytical Chemistry, 2001, 73, 3940-3946.	6.5	112

#	Article	IF	CITATIONS
19	Multidisciplinary graduate education in analytical chemistry. Fresenius' Journal of Analytical Chemistry, 2001, 371, 405-406.	1.5	0
20	Design of Molecular Recognition Elements for Environmental Potentiometric Sensors. ACS Symposium Series, 2000, , 8-22.	0.5	1
21	A Selective Optical Sensor Based on [9]Mercuracarborand-3, a New Type of Ionophore with a Chloride Complexing Cavity. Analytical Chemistry, 2000, 72, 4249-4254.	6.5	57