
Federica Briani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5208360/publications.pdf Version: 2024-02-01

FEDERICA RRIANI

#	Article	IF	CITATIONS
1	Activity and Function in Human Cells of the Evolutionary Conserved Exonuclease Polynucleotide Phosphorylase. International Journal of Molecular Sciences, 2022, 23, 1652.	4.1	8
2	Phages as immunomodulators and their promising use as anti-inflammatory agents in a cftr loss-of-function zebrafish model. Journal of Cystic Fibrosis, 2021, 20, 1046-1052.	0.7	24
3	Different csrA Expression Levels in C versus K-12 E. coli Strains Affect Biofilm Formation and Impact the Regulatory Mechanism Presided by the CsrB and CsrC Small RNAs. Microorganisms, 2021, 9, 1010.	3.6	3
4	Sanguinarine Inhibits the 2-Ketogluconate Pathway of Glucose Utilization in Pseudomonas aeruginosa. Frontiers in Microbiology, 2021, 12, 744458.	3.5	6
5	Phage Therapy Application to Counteract Pseudomonas aeruginosa Infection in Cystic Fibrosis Zebrafish Embryos. Journal of Visualized Experiments, 2020, , .	0.3	5
6	Overexpression of lpxT Gene in Escherichia coli Inhibits Cell Division and Causes Envelope Defects without Changing the Overall Phosphorylation Level of Lipid A. Microorganisms, 2020, 8, 826.	3.6	4
7	Temperature-dependent regulation of the Escherichia coli lpxT gene. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2019, 1862, 786-795.	1.9	5
8	Phage therapy against Pseudomonas aeruginosa infections in a cystic fibrosis zebrafish model. Scientific Reports, 2019, 9, 1527.	3.3	97
9	Design of a Broad-Range Bacteriophage Cocktail That Reduces Pseudomonas aeruginosa Biofilms and Treats Acute Infections in Two Animal Models. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	166
10	Pseudomonas aeruginosa mutants defective in glucose uptake have pleiotropic phenotype and altered virulence in non-mammal infection models. Scientific Reports, 2018, 8, 16912.	3.3	23
11	Polynucleotide phosphorylase is implicated in homologous recombination and DNA repair in Escherichia coli. BMC Microbiology, 2017, 17, 81.	3.3	11
12	Cell-Based Fluorescent Screen to Identify Inhibitors of Bacterial Translation Initiation. Methods in Molecular Biology, 2017, 1520, 237-245.	0.9	3
13	Regulation and functions of bacterial PNPase. Wiley Interdisciplinary Reviews RNA, 2016, 7, 241-258.	6.4	40
14	A Whole-Cell Assay for Specific Inhibitors of Translation Initiation in Bacteria. Journal of Biomolecular Screening, 2015, 20, 627-633.	2.6	11
15	RNase III-Independent Autogenous Regulation of Escherichia coli Polynucleotide Phosphorylase via Translational Repression. Journal of Bacteriology, 2015, 197, 1931-1938.	2.2	14
16	A conserved loop in polynucleotide phosphorylase (PNPase) essential for both RNA and ADP/phosphate binding. Biochimie, 2014, 97, 49-59.	2.6	12
17	Tet-Trap, a genetic approach to the identification of bacterial RNA thermometers: application to <i>Pseudomonas aeruginosa</i> . Rna, 2014, 20, 1963-1976.	3.5	32
18	The RNA Processing Enzyme Polynucleotide Phosphorylase Negatively Controls Biofilm Formation by Repressing Poly-N-Acetylglucosamine (PNAG) Production in Escherichia coli C. , 2014, , 45-68.		0

Federica Briani

#	Article	IF	CITATIONS
19	The RNA processing enzyme polynucleotide phosphorylase negatively controls biofilm formation by repressing poly-N-acetylglucosamine (PNAG) production in Escherichia coli C. BMC Microbiology, 2012, 12, 270.	3.3	32
20	Comparative Profiling of Pseudomonas aeruginosa Strains Reveals Differential Expression of Novel Unique and Conserved Small RNAs. PLoS ONE, 2012, 7, e36553.	2.5	55
21	Identification and expression profiling of Ceratitis capitata genes coding for β-hexosaminidases. Gene, 2011, 473, 44-56.	2.2	12
22	Polynucleotide phosphorylase exonuclease and polymerase activities on single-stranded DNA ends are modulated by RecN, SsbA and RecA proteins. Nucleic Acids Research, 2011, 39, 9250-9261.	14.5	39
23	S1 ribosomal protein and the interplay between translation and mRNA decay. Nucleic Acids Research, 2011, 39, 7702-7715.	14.5	61
24	Autogenous Regulation of <i>Escherichia coli</i> Polynucleotide Phosphorylase Expression Revisited. Journal of Bacteriology, 2009, 191, 1738-1748.	2.2	39
25	Polynucleotide phosphorylase hinders mRNA degradation upon ribosomal protein S1 overexpression in <i>Escherichia coli</i> . Rna, 2008, 14, 2417-2429.	3.5	40
26	Regulation of Escherichia coli Polynucleotide Phosphorylase by ATP. Journal of Biological Chemistry, 2008, 283, 27355-27359.	3.4	30
27	Genetic analysis of polynucleotide phosphorylase structure and functions. Biochimie, 2007, 89, 145-157.	2.6	47
28	Autogenous regulation of Escherichia coli polynucleotide phosphorylase during cold acclimation by transcription termination and antitermination. Molecular Genetics and Genomics, 2007, 278, 75-84.	2.1	16
29	Analysis of the Escherichia coli RNA degradosome composition by a proteomic approach. Biochimie, 2006, 88, 151-161.	2.6	73
30	Identification and expression analysis of Drosophilamelanogaster genes encoding Î ² -hexosaminidases of the sperm plasma membrane. Glycobiology, 2006, 16, 786-800.	2.5	55
31	A mutation in polynucleotide phosphorylase from Escherichia coli impairing RNA binding and degradosome stability. Nucleic Acids Research, 2004, 32, 1006-1017.	14.5	32
32	Changes in Escherichia coli transcriptome during acclimatization at low temperature. Research in Microbiology, 2003, 154, 573-580.	2.1	94
33	Hfq affects the length and the frequency of short oligo(A) tails at the 3' end of Escherichia coli rpsO mRNAs. Nucleic Acids Research, 2003, 31, 4017-4023.	14.5	66
34	Characterization of the small antisense CI RNA that regulates bacteriophage P4 immunity 1 1Edited by M. Gottesman. Journal of Molecular Biology, 2002, 315, 541-549.	4.2	9
35	RNase E and Polyadenyl Polymerase I are Involved in Maturation of CI RNA, the P4 Phage Immunity Factor. Journal of Molecular Biology, 2002, 318, 321-331.	4.2	16
36	Transcriptional and post-transcriptional control of polynucleotide phosphorylase during cold acclimation in Escherichia coli. Molecular Microbiology, 2002, 36, 1470-1480.	2.5	79

Federica Briani

#	Article	IF	CITATIONS
37	The Plasmid Status of Satellite Bacteriophage P4. Plasmid, 2001, 45, 1-17.	1.4	77
38	Antisense RNA-dependent transcription termination sites that modulate lysogenic development of satellite phage P4. Molecular Microbiology, 2000, 36, 1124-1134.	2.5	19
39	Polynucleotide phosphorylase of Escherichia coli is required for the establishment of bacteriophage P4 immunity. Journal of Bacteriology, 1996, 178, 5513-5521.	2.2	41
40	Immunity Specificity Determinants in the P4-like Retronphage φR73. Virology, 1996, 216, 389-396.	2.4	13
41	A Rho-Dependent Transcription Termination Site Regulated by Bacteriophage P4 RNA Immunity Factor. Virology, 1996, 223, 57-67.	2.4	21
42	Multiple regulatory mechanisms controlling phage-plasmid P4 propagation. FEMS Microbiology Reviews, 1995, 17, 127-134.	8.6	16