
Susan Perkin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5207966/publications.pdf Version: 2024-02-01

SHOAN DEDKIN

#	Article	IF	CITATIONS
1	Surface Reconstruction of Fluoropolymers in Liquid Media. Langmuir, 2022, 38, 4657-4668.	3.5	0
2	Surface Forces and Structure in a Water-in-Salt Electrolyte. Journal of Physical Chemistry Letters, 2021, 12, 1702-1707.	4.6	26
3	Controlling adhesion using AC electric fields across fluid films. Journal of Physics Condensed Matter, 2021, 33, 31LT02.	1.8	1
4	A new methodology for a detailed investigation of quantized friction in ionic liquids. Physical Chemistry Chemical Physics, 2020, 22, 455-466.	2.8	15
5	Nanolubrication in deep eutectic solvents. Physical Chemistry Chemical Physics, 2020, 22, 20253-20264.	2.8	26
6	A polymer coating which is sticky yet repulsive to water and slippery yet attractive for oils. Chemical Communications, 2020, 56, 2877-2880.	4.1	3
7	Interfacial Structure and Boundary Lubrication of a Dicationic Ionic Liquid. Langmuir, 2019, 35, 15444-15450.	3.5	32
8	Direct measurements of structural forces and twist transitions in cholesteric liquid crystal films with a surface force apparatus. Soft Matter, 2019, 15, 4905-4914.	2.7	1
9	Surface forces generated by the action of electric fields across liquid films. Soft Matter, 2019, 15, 4255-4265.	2.7	26
10	Solidification and superlubricity with molecular alkane films. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 25418-25423.	7.1	18
11	Are Buckminsterfullerenes Molecular Ball Bearings?. Journal of Physical Chemistry B, 2019, 123, 310-316.	2.6	5
12	Structure and dynamics of mica-confined films of [C10C1Pyrr][NTf2] ionic liquid. Journal of Chemical Physics, 2018, 148, 193808.	3.0	15
13	Interfacial structure and structural forces in mixtures of ionic liquid with a polar solvent. Faraday Discussions, 2018, 206, 427-442.	3.2	40
14	Structure and dynamics of ionic liquids: general discussion. Faraday Discussions, 2018, 206, 291-337.	3.2	8
15	Ionic liquids at interfaces: general discussion. Faraday Discussions, 2018, 206, 549-586.	3.2	0
16	A 3-mirror surface force balance for the investigation of fluids confined to nanoscale films between two ultra-smooth polarizable electrodes. Review of Scientific Instruments, 2018, 89, 123901.	1.3	12
17	Multiple-beam optical interferometry of anisotropic soft materials nanoconfined with the surface force apparatus. Review of Scientific Instruments, 2018, 89, 085112.	1.3	7
18	Nanotribology. Beilstein Journal of Nanotechnology, 2018, 9, 2330-2331.	2.8	0

SUSAN PERKIN

#	Article	IF	CITATIONS
19	Preface: Special Topic on Chemical Physics of Ionic Liquids. Journal of Chemical Physics, 2018, 148, 193501.	3.0	12
20	Are Ionic Liquids Good Boundary Lubricants? A Molecular Perspective. Lubricants, 2018, 6, 9.	2.9	51
21	Nanoconfined ionic liquids: Disentangling electrostatic and viscous forces. Physical Review Fluids, 2018, 3, .	2.5	36
22	Underscreening in concentrated electrolytes. Faraday Discussions, 2017, 199, 239-259.	3.2	122
23	Switching the Structural Force in Ionic Liquid-Solvent Mixtures by Varying Composition. Physical Review Letters, 2017, 118, 096002.	7.8	68
24	Direct Measurement of the Surface Energy of Graphene. Nano Letters, 2017, 17, 3815-3821.	9.1	95
25	The nanostructure of a lithium glyme solvate ionic liquid at electrified interfaces. Physical Chemistry Chemical Physics, 2017, 19, 11004-11010.	2.8	27
26	Long range electrostatic forces in ionic liquids. Chemical Communications, 2017, 53, 1214-1224.	4.1	285
27	Direct measurements of ionic liquid layering at a single mica–liquid interface and in nano-films between two mica–liquid interfaces. Physical Chemistry Chemical Physics, 2017, 19, 297-304.	2.8	42
28	Nanotribology and voltage-controlled friction: general discussion. Faraday Discussions, 2017, 199, 349-376.	3.2	0
29	Electrotunable wetting, and micro- and nanofluidics: general discussion. Faraday Discussions, 2017, 199, 195-237.	3.2	2
30	Scaling Analysis of the Screening Length in Concentrated Electrolytes. Physical Review Letters, 2017, 119, 026002.	7.8	163
31	Contact-free calibration of an asymmetric multi-layer interferometer for the surface force balance. Review of Scientific Instruments, 2017, 88, 123903.	1.3	4
32	Ion–Image Interactions and Phase Transition at Electrolyte–Metal Interfaces. Journal of Physical Chemistry Letters, 2016, 7, 2753-2757.	4.6	26
33	The Electrostatic Screening Length in Concentrated Electrolytes Increases with Concentration. Journal of Physical Chemistry Letters, 2016, 7, 2157-2163.	4.6	422
34	Influence of Lithium Solutes on Double-Layer Structure of Ionic Liquids. Journal of Physical Chemistry Letters, 2015, 6, 4857-4861.	4.6	17
35	Are Room-Temperature Ionic Liquids Dilute Electrolytes?. Journal of Physical Chemistry Letters, 2015, 6, 159-163.	4.6	118
36	Molecular Friction Mechanisms Across Nanofilms of a Bilayer-Forming Ionic Liquid. Journal of Physical Chemistry Letters, 2014, 5, 4032-4037.	4.6	81

SUSAN PERKIN

#	Article	IF	CITATIONS
37	Unravelling nanoconfined films of ionic liquids. Journal of Chemical Physics, 2014, 141, 094904.	3.0	11
38	Preparation and characterisation of high-density ionic liquids incorporating halobismuthate anions. Dalton Transactions, 2014, 43, 10910-10919.	3.3	19
39	A Graphene Surface Force Balance. Langmuir, 2014, 30, 11485-11492.	3.5	21
40	Quantized friction across ionic liquid thin films. Physical Chemistry Chemical Physics, 2013, 15, 15317.	2.8	135
41	Soft matter under confinement. Soft Matter, 2013, 9, 10438.	2.7	21
42	Is a Stern and diffuse layer model appropriate to ionic liquids at surfaces?. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E4121.	7.1	93
43	Monolayer and bilayer structures in ionic liquids and their mixtures confined to nano-films. Faraday Discussions, 2013, 167, 279.	3.2	62
44	Monolayer to Bilayer Structural Transition in Confined Pyrrolidinium-Based Ionic Liquids. Journal of Physical Chemistry Letters, 2013, 4, 378-382.	4.6	145
45	Interfacial Behavior of Thin Ionic Liquid Films on Mica. Journal of Physical Chemistry C, 2013, 117, 5101-5111.	3.1	60
46	Long-Ranged Attraction between Disordered Heterogeneous Surfaces. Physical Review Letters, 2012, 109, 168305.	7.8	47
47	Resolving the structure of a model hydrophobic surface: DODAB monolayers on mica. RSC Advances, 2012, 2, 4181.	3.6	10
48	Time Dependence of Interactions between a Surfactant-Coated Substrate and a Uniformly Charged Surface. Langmuir, 2012, 28, 16029-16037.	3.5	7
49	Ionic liquids in confined geometries. Physical Chemistry Chemical Physics, 2012, 14, 5052.	2.8	329
50	Self-assembly in the electrical double layer of ionic liquids. Chemical Communications, 2011, 47, 6572.	4.1	245
51	Restructuring of Hydrophobic Surfaces Created by Surfactant Adsorption to Mica Surfaces. Langmuir, 2011, 27, 11737-11741.	3.5	22
52	lon-Specific Effects on the Interaction between Fibronectin and Negatively Charged Mica Surfaces. Langmuir, 2010, 26, 5304-5308.	3.5	29
53	Layering and shear properties of an ionic liquid, 1-ethyl-3-methylimidazolium ethylsulfate, confined to nano-films between mica surfaces. Physical Chemistry Chemical Physics, 2010, 12, 1243-1247.	2.8	269
54	The effect of counterions on surfactant-hydrophobized surfaces. Faraday Discussions, 2010, 146, 309.	3.2	16

SUSAN PERKIN

#	Article	IF	CITATIONS
55	Dynamic properties of confined hydration layers. Faraday Discussions, 2009, 141, 399-413.	3.2	77
56	Breakdown of hydration repulsion between charged surfaces in aqueous Cs+ solutions. Physical Chemistry Chemical Physics, 2008, 10, 4939.	2.8	33
57	Forces between Mica Surfaces, Prepared in Different Ways, Across Aqueous and Nonaqueous Liquids Confined to Molecularly Thin Films. Langmuir, 2006, 22, 6142-6152.	3.5	93
58	Long-Range Attraction between Charge-Mosaic Surfaces across Water. Physical Review Letters, 2006, 96, 038301.	7.8	89
59	Stability of Self-Assembled Hydrophobic Surfactant Layers in Water. Journal of Physical Chemistry B, 2005, 109, 3832-3837.	2.6	64
60	Fluidity of Water Confined Down to Subnanometer Films. Langmuir, 2004, 20, 5322-5332.	3.5	108
61	Fluidity of water and of hydrated ions confined between solid surfaces to molecularly thin films. Journal of Physics Condensed Matter, 2004, 16, S5437-S5448.	1.8	62
62	Clostridium isatidis colonised carbon electrodes: voltammetric evidence for direct solid state redox processes. New Journal of Chemistry, 2000, 24, 179-181.	2.8	38