James P Pirruccello

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/520790/publications.pdf

Version: 2024-02-01

36 papers 9,087 citations

304602 22 h-index 36 g-index

58 all docs 58 docs citations

58 times ranked 14584 citing authors

#	Article	IF	CITATIONS
1	Deep learning enables genetic analysis of the human thoracic aorta. Nature Genetics, 2022, 54, 40-51.	9.4	90
2	Analysis of rare genetic variation underlying cardiometabolic diseases and traits among 200,000 individuals in the UK Biobank. Nature Genetics, 2022, 54, 240-250.	9.4	68
3	Genetic Architecture of Stroke of Undetermined Source: Overlap with Known Stroke Etiologies and Associations with Modifiable Risk Factors. Annals of Neurology, 2022, 91, 640-651.	2.8	7
4	Genetic Association of Body Mass Index With Pathologic Left Ventricular Remodeling. Journal of the American Heart Association, 2022, 11, e024408.	1.6	0
5	Association of Pathogenic DNA Variants Predisposing to Cardiomyopathy With Cardiovascular Disease Outcomes and All-Cause Mortality. JAMA Cardiology, 2022, 7, 723.	3.0	15
6	Genetic analysis of right heart structure and function in 40,000 people. Nature Genetics, 2022, 54, 792-803.	9.4	34
7	LMNA Variants and Risk of Adult-Onset Cardiac Disease. Journal of the American College of Cardiology, 2022, 80, 50-59.	1.2	14
8	Lp(a) (Lipoprotein[a]) Concentrations and Incident Atherosclerotic Cardiovascular Disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 465-474.	1.1	104
9	Premature Menopause, Clonal Hematopoiesis, and Coronary Artery Disease in Postmenopausal Women. Circulation, 2021, 143, 410-423.	1.6	87
10	Elevated Blood Pressure Increases Pneumonia Risk: Epidemiological Association and Mendelian Randomization in the UK Biobank. Med, 2021, 2, 137-148.e4.	2.2	21
11	Genetics of 35 blood and urine biomarkers in the UK Biobank. Nature Genetics, 2021, 53, 185-194.	9.4	377
12	Deep learning to estimate cardiac magnetic resonance–derived left ventricular mass. Cardiovascular Digital Health Journal, 2021, 2, 109-117.	0.5	3
13	Chromosome Xq23 is associated with lower atherogenic lipid concentrations and favorable cardiometabolic indices. Nature Communications, 2021, 12, 2182.	5.8	17
14	Deep Learning to Predict Cardiac Magnetic Resonance–Derived Left Ventricular Mass and Hypertrophy From 12-Lead ECGs. Circulation: Cardiovascular Imaging, 2021, 14, e012281.	1.3	26
15	Hematopoietic mosaic chromosomal alterations increase the risk for diverse types of infection. Nature Medicine, 2021, 27, 1012-1024.	15.2	109
16	Cardiovascular and KidneyÂOutcomes Across the GlycemicÂSpectrum. Journal of the American College of Cardiology, 2021, 78, 453-464.	1.2	45
17	<i>Nonmt3a</i> -mutated clonal hematopoiesis promotes osteoporosis. Journal of Experimental Medicine, 2021, 218, .	4.2	81
18	Machine learning enables new insights into genetic contributions to liver fat accumulation. Cell Genomics, 2021, 1, 100066.	3.0	34

#	Article	IF	CITATIONS
19	Monogenic and Polygenic Contributions to Atrial Fibrillation Risk. Circulation Research, 2020, 126, 200-209.	2.0	79
20	Genetic Interleukin 6 Signaling Deficiency Attenuates Cardiovascular Risk in Clonal Hematopoiesis. Circulation, 2020, 141, 124-131.	1.6	270
21	Menopausal age and left ventricular remodeling by cardiac magnetic resonance imaging among 14,550 women. American Heart Journal, 2020, 229, 138-143.	1.2	10
22	Analysis of cardiac magnetic resonance imaging in 36,000 individuals yields genetic insights into dilated cardiomyopathy. Nature Communications, 2020, 11, 2254.	5.8	140
23	Titin Truncating Variants in Adults Without Known Congestive HeartÂFailure. Journal of the American College of Cardiology, 2020, 75, 1239-1241.	1.2	22
24	How Will Machine Learning Inform the Clinical Care of Atrial Fibrillation?. Circulation Research, 2020, 127, 155-169.	2.0	35
25	Role of angiopoietin-like 3 (ANGPTL3) in regulating plasma level of low-density lipoprotein cholesterol. Atherosclerosis, 2018, 268, 196-206.	0.4	81
26	"Road Map―to Improving Enrollment in Cardiac Rehabilitation: Identifying Barriers and Evaluating Alternatives. Journal of the American Heart Association, 2017, 6, .	1.6	7
27	An electronic cardiac rehabilitation referral system increases cardiac rehabilitation referrals. Coronary Artery Disease, 2017, 28, 342-345.	0.3	12
28	Targeted exonic sequencing of GWAS loci in the high extremes of the plasma lipids distribution. Atherosclerosis, 2016, 250, 63-68.	0.4	11
29	A Novel <i>APOB</i> Mutation Identified by Exome Sequencing Cosegregates With Steatosis, Liver Cancer, and Hypocholesterolemia. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 2021-2025.	1.1	73
30	Advances in genetics show the need for extending screening strategies for autosomal dominant hypercholesterolaemia. European Heart Journal, 2012, 33, 1360-1366.	1.0	76
31	Plasma HDL cholesterol and risk of myocardial infarction: a mendelian randomisation study. Lancet, The, 2012, 380, 572-580.	6.3	1,937
32	Genetics of lipid disorders. Current Opinion in Cardiology, 2010, 25, 238-242.	0.8	28
33	From noncoding variant to phenotype via SORT1 at the 1p13 cholesterol locus. Nature, 2010, 466, 714-719.	13.7	1,018
34	Biological, clinical and population relevance of 95 loci for blood lipids. Nature, 2010, 466, 707-713.	13.7	3,249
35	Candidate Gene Association Resource (CARe). Circulation: Cardiovascular Genetics, 2010, 3, 267-275.	5.1	139
36	Exome Sequencing, <i> ANGPTL3 </i> Mutations, and Familial Combined Hypolipidemia. New England Journal of Medicine, 2010, 363, 2220-2227.	13.9	640