Craig A Goodman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5207592/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	CORP: Gene delivery into murine skeletal muscle using in vivo electroporation. Journal of Applied Physiology, 2022, 133, 41-59.	2.5	4
2	Oral digoxin effects on exercise performance, K ⁺ regulation and skeletal muscle Na ⁺ ,K ⁺ â€ATPase in healthy humans. Journal of Physiology, 2022, 600, 3749-3774.	2.9	3
3	Dynamic Changes to the Skeletal Muscle Proteome and Ubiquitinome Induced by the E3 Ligase, ASB2β. Molecular and Cellular Proteomics, 2021, 20, 100050.	3.8	16
4	Metronomic 5-Fluorouracil Delivery Primes Skeletal Muscle for Myopathy but Does Not Cause Cachexia. Pharmaceuticals, 2021, 14, 478.	3.8	7
5	More is more? rDNA gene dosage is correlated with resistance exerciseâ€induced ribosome biogenesis. Journal of Physiology, 2021, 599, 3261-3262.	2.9	1
6	The regulation of polyamine pathway proteins in models of skeletal muscle hypertrophy and atrophy: a potential role for mTORC1. American Journal of Physiology - Cell Physiology, 2021, 320, C987-C999.	4.6	14
7	Chemotherapy-Induced Myopathy: The Dark Side of the Cachexia Sphere. Cancers, 2021, 13, 3615.	3.7	29
8	Adenylosuccinic acid: a novel inducer of the cytoprotectant Nrf2 with efficacy in Duchenne muscular dystrophy. Current Medical Research and Opinion, 2021, 37, 465-467.	1.9	4
9	Expanding the MuRF1 Universe with Quantitative Ubiquitylomics. Function, 2021, 2, zqab058.	2.3	0
10	Rapamycin Affects Palmitate-Induced Lipotoxicity in Osteoblasts by Modulating Apoptosis and Autophagy. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2020, 75, 58-63.	3.6	38
11	TMEPAI/PMEPA1 Is a Positive Regulator of Skeletal Muscle Mass. Frontiers in Physiology, 2020, 11, 560225.	2.8	5
12	Sodium nitrate co-supplementation does not exacerbate low dose metronomic doxorubicin-induced cachexia in healthy mice. Scientific Reports, 2020, 10, 15044.	3.3	5
13	The Paradoxical Effect of PARP Inhibitor BGP-15 on Irinotecan-Induced Cachexia and Skeletal Muscle Dysfunction. Cancers, 2020, 12, 3810.	3.7	7
14	Effect of inorganic nitrate on exercise capacity, mitochondria respiration, and vascular function in heart failure with reduced ejection fraction. Journal of Applied Physiology, 2020, 128, 1355-1364.	2.5	12
15	Exercise May Ameliorate the Detrimental Side Effects of High Vitamin D Supplementation on Muscle Function in Mice. Journal of Bone and Mineral Research, 2020, 35, 1092-1106.	2.8	11
16	Adenylosuccinic acid therapy ameliorates murine Duchenne Muscular Dystrophy. Scientific Reports, 2020, 10, 1125.	3.3	24
17	Role of mTORC1 in mechanically induced increases in translation and skeletal muscle mass. Journal of Applied Physiology, 2019, 127, 581-590.	2.5	80
18	Resistance Exercise-Induced Hypertrophy: A Potential Role for Rapamycin-Insensitive mTOR. Exercise and Sport Sciences Reviews, 2019, 47, 188-194.	3.0	37

CRAIG A GOODMAN

#	Article	IF	CITATIONS
19	The role of raptor in the mechanical loadâ€induced regulation of mTOR signaling, protein synthesis, and skeletal muscle hypertrophy. FASEB Journal, 2019, 33, 4021-4034.	0.5	110
20	Osteosarcopenia as a Lipotoxic Disease. , 2019, , 123-143.		2
21	The Hippo Signaling Pathway in the Regulation of Skeletal Muscle Mass and Function. Exercise and Sport Sciences Reviews, 2018, 46, 92-96.	3.0	48
22	A DCKζ-FoxO-ubiquitin proteolytic axis controls fiber size during skeletal muscle remodeling. Science Signaling, 2018, 11, .	3.6	34
23	Temporal mechanically-induced signaling events in bone and dorsal root ganglion neurons after in vivo bone loading. PLoS ONE, 2018, 13, e0192760.	2.5	3
24	Attempting to Compensate for Reduced Neuronal Nitric Oxide Synthase Protein with Nitrate Supplementation Cannot Overcome Metabolic Dysfunction but Rather Has Detrimental Effects in Dystrophin-Deficient mdx Muscle. Neurotherapeutics, 2017, 14, 429-446.	4.4	28
25	Insights into the role and regulation of TCTP in skeletal muscle. Oncotarget, 2017, 8, 18754-18772.	1.8	21
26	The effect of taurine and β-alanine supplementation on taurine transporter protein and fatigue resistance in skeletal muscle from mdx mice. Amino Acids, 2016, 48, 2635-2645.	2.7	25
27	Role of oxidative stress in oxaliplatinâ€induced enteric neuropathy and colonic dysmotility in mice. British Journal of Pharmacology, 2016, 173, 3502-3521.	5.4	74
28	Functional Deficits Precede Muscle Mass Loss. Medicine and Science in Sports and Exercise, 2016, 48, 354.	0.4	0
29	Prioritization of skeletal muscle growth for emergence from hibernation. Journal of Experimental Biology, 2015, 218, 276-84.	1.7	40
30	Statin-Induced Increases in Atrophy Gene Expression Occur Independently of Changes in PGC1α Protein and Mitochondrial Content. PLoS ONE, 2015, 10, e0128398.	2.5	24
31	Yesâ€Associated Protein is upâ€regulated by mechanical overload and is sufficient to induce skeletal muscle hypertrophy. FEBS Letters, 2015, 589, 1491-1497.	2.8	82
32	Bone and skeletal muscle: Key players in mechanotransduction and potential overlapping mechanisms. Bone, 2015, 80, 24-36.	2.9	114
33	PGCâ€1α overexpression by <i>in vivo</i> transfection attenuates mitochondrial deterioration of skeletal muscle caused by immobilization. FASEB Journal, 2015, 29, 4092-4106.	0.5	68
34	The mechanical activation of mTOR signaling: an emerging role for late endosome/lysosomal targeting. Journal of Muscle Research and Cell Motility, 2014, 35, 11-21.	2.0	45
35	A role for Raptor phosphorylation in the mechanical activation of mTOR signaling. Cellular Signalling, 2014, 26, 313-322.	3.6	48
36	The Role of Diacylglycerol Kinase ζ and Phosphatidic Acid in the Mechanical Activation of Mammalian Target of Rapamycin (mTOR) Signaling and Skeletal Muscle Hypertrophy. Journal of Biological Chemistry, 2014, 289, 1551-1563.	3.4	129

CRAIG A GOODMAN

#	Article	IF	CITATIONS
37	Greater chance of high core temperatures with modified pacing strategy during team sport in the heat. Journal of Science and Medicine in Sport, 2014, 17, 113-118.	1.3	59
38	New roles for Smad signaling and phosphatidic acid in the regulation of skeletal muscle mass. F1000prime Reports, 2014, 6, 20.	5.9	19
39	Unaccustomed Eccentric Contractions Impair Plasma K+ Regulation in the Absence of Changes in Muscle Na+,K+-ATPase Content. PLoS ONE, 2014, 9, e101039.	2.5	3
40	Eccentric contractions increase the phosphorylation of tuberous sclerosis complexâ€2 (TSC2) and alter the targeting of TSC2 and the mechanistic target of rapamycin to the lysosome. Journal of Physiology, 2013, 591, 4611-4620.	2.9	76
41	Smad3 Induces Atrogin-1, Inhibits mTOR and Protein Synthesis, and Promotes Muscle Atrophy In Vivo. Molecular Endocrinology, 2013, 27, 1946-1957.	3.7	102
42	Altering the rest interval during highâ€intensity interval training does not affect muscle or performance adaptations. Experimental Physiology, 2013, 98, 481-490.	2.0	40
43	The Role of mTORC1 in Regulating Protein Synthesis and Skeletal Muscle Mass in Response to Various Mechanical Stimuli. Reviews of Physiology, Biochemistry and Pharmacology, 2013, 166, 43-95.	1.6	105
44	Growth restriction in the rat alters expression of metabolic genes during postnatal cardiac development in a sex-specific manner. Physiological Genomics, 2013, 45, 99-105.	2.3	23
45	Measuring Protein Synthesis With SUnSET. Exercise and Sport Sciences Reviews, 2013, 41, 107-115.	3.0	199
46	Imaging of protein synthesis with puromycin. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E989; author reply E990.	7.1	23
47	Muscle Fiber Type-Dependent Differences in the Regulation of Protein Synthesis. PLoS ONE, 2012, 7, e37890.	2.5	70
48	Commentaries on Viewpoint: Maximal Na ⁺ -K ⁺ -ATPase activity is upregulated in association with muscle activity. Journal of Applied Physiology, 2012, 112, 2124-2126.	2.5	2
49	Resistance Training Improves Depressive Symptoms in Individuals at High Risk for Type 2 Diabetes. Journal of Strength and Conditioning Research, 2011, 25, 2328-2333.	2.1	16
50	The role of skeletal muscle mTOR in the regulation of mechanical loadâ€induced growth. Journal of Physiology, 2011, 589, 5485-5501.	2.9	238
51	Recent progress toward understanding the molecular mechanisms that regulate skeletal muscle mass. Cellular Signalling, 2011, 23, 1896-1906.	3.6	147
52	Novel insights into the regulation of skeletal muscle protein synthesis as revealed by a new nonradioactive <i>in vivo</i> technique. FASEB Journal, 2011, 25, 1028-1039.	0.5	389
53	The Role of mTOR in Mechanical Load Induced Skeletal Muscle Hypertrophy and Hyperplasia. FASEB Journal, 2011, 25, 1105.1.	0.5	0
54	Growth restriction before and after birth increases kinase signaling pathways in the adult rat heart. Journal of Developmental Origins of Health and Disease, 2010, 1, 376-385.	1.4	5

#	Article	IF	CITATIONS
55	A Phosphatidylinositol 3-Kinase/Protein Kinase B-independent Activation of Mammalian Target of Rapamycin Signaling Is Sufficient to Induce Skeletal Muscle Hypertrophy. Molecular Biology of the Cell, 2010, 21, 3258-3268.	2.1	102
56	A PI3K/PKB-Independent Activation of mTOR Signaling is Sufficient to Induce Skeletal Muscle Hypertrophy. Medicine and Science in Sports and Exercise, 2010, 42, 7.	0.4	2
57	Akt, AS160, metabolic risk factors and aerobic fitness in middle-aged women. Exercise Immunology Review, 2010, 16, 98-104.	0.4	12
58	Taurine supplementation increases skeletal muscle force production and protects muscle function during and after high-frequency in vitro stimulation. Journal of Applied Physiology, 2009, 107, 144-154.	2.5	65
59	The reliability of the 1RM strength test for untrained middle-aged individuals. Journal of Science and Medicine in Sport, 2009, 12, 310-316.	1.3	221
60	Dissociation between force and maximal Na+, K+-ATPase activity in rat fast-twitch skeletal muscle with fatiguing in vitro stimulation. European Journal of Applied Physiology, 2009, 105, 575-583.	2.5	4
61	Inflammation, hepatic enzymes and resistance training in individuals with metabolic risk factors. Diabetic Medicine, 2009, 26, 220-227.	2.3	56
62	Functional capacity and quality of life in middle-age men and women with high and low number of metabolic risk factors. International Journal of Cardiology, 2009, 133, 281-283.	1.7	12
63	Psychological Responses to Acute Resistance Exercise in Men and Women Who Are Obese. Journal of Strength and Conditioning Research, 2009, 23, 1548-1552.	2.1	15
64	E–C coupling and contractile characteristics of mechanically skinned single fibres from young rats during rapid growth and maturation. Pflugers Archiv European Journal of Physiology, 2008, 456, 1217-1228.	2.8	7
65	BDNF, Metabolic Risk Factors, and Resistance Training in Middle-Aged Individuals. Medicine and Science in Sports and Exercise, 2008, 40, 535-541.	0.4	86
66	No Difference in 1RM Strength and Muscle Activation During the Barbell Chest Press on a Stable and Unstable Surface. Journal of Strength and Conditioning Research, 2008, 22, 88-94.	2.1	70
67	Effects of Mild Electro-Stimulation Treatment on Healthy Humans Following Exercise Induced Muscle Damage. Medicine and Science in Sports and Exercise, 2008, 40, S76.	0.4	2
68	The Effect of Resistance Training on Functional Capacity and Quality of Life in Individuals with High and Low Numbers of Metabolic Risk Factors. Diabetes Care, 2007, 30, 2205-2210.	8.6	90
69	Balance and Injury in Elite Australian Footballers. International Journal of Sports Medicine, 2007, 28, 844-847.	1.7	54
70	Calpain-3 is autolyzed and hence activated in human skeletal muscle 24 h following a single bout of eccentric exercise. Journal of Applied Physiology, 2007, 103, 926-931.	2.5	65
71	Effects of endurance training status and sex differences on Na+,K+-pump mRNA expression, content and maximal activity in human skeletal muscle. Acta Physiologica, 2007, 189, 259-269.	3.8	20
72	N-acetylcysteine attenuates the decline in muscle Na+,K+-pump activity and delays fatigue during prolonged exercise in humans. Journal of Physiology, 2006, 576, 279-288.	2.9	216

CRAIG A GOODMAN

#	Article	IF	CITATIONS
73	Interspersed normoxia during live high, train low interventions reverses an early reduction in muscle Na+, K+ATPase activity in well-trained athletes. European Journal of Applied Physiology, 2006, 98, 299-309.	2.5	20
74	Relationship between static and dynamic balance tests among elite Australian Footballers. Journal of Science and Medicine in Sport, 2006, 9, 288-291.	1.3	73
75	Prolonged submaximal exercise induces isoform-specific Na+-K+-ATPase mRNA and protein responses in human skeletal muscle. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2006, 290, R414-R424.	1.8	27
76	GLYCOGEN CONTENT AND CONTRACTILE RESPONSIVENESS TO T-SYSTEM DEPOLARIZATION IN SKINNED MUSCLE FIBRES OF THE RAT. Clinical and Experimental Pharmacology and Physiology, 2005, 32, 749-756.	1.9	16
77	Dexamethasone up-regulates skeletal muscle maximal Na+,K+pump activity by muscle group specific mechanisms in humans. Journal of Physiology, 2005, 567, 583-589.	2.9	29
78	Does a balance deficit persist in Australian football players with previous lower limb ligament injury?. Journal of Science and Medicine in Sport, 2005, 8, 85-91.	1.3	9
79	MHC-based fiber type and E-C coupling characteristics in mechanically skinned muscle fibers of the rat. American Journal of Physiology - Cell Physiology, 2003, 284, C1448-C1459.	4.6	17
80	A Review of Resistance Exercise and Posture Realignment. Journal of Strength and Conditioning Research, 2001, 15, 385-390.	2.1	11
81	A Review of Resistance Exercise and Posture Realignment. Journal of Strength and Conditioning Research, 2001, 15, 385.	2.1	21
82	Glycogen stability and glycogen phosphorylase activities in isolated skeletal muscles from rat and toad. , 2000, 21, 655-662.		5
83	A Novel DGKK-FoxO-Ubiquitin Proteolytic Axis Controls Fiber Size During Skeletal Muscle Remodeling. SSRN Electronic Journal, 0, , .	0.4	0