Meelis Pärtel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5207271/publications.pdf

Version: 2024-02-01

196 papers 14,871 citations

25034 57 h-index 21540 114 g-index

208 all docs

208 docs citations

times ranked

208

15681 citing authors

#	Article	IF	CITATIONS
1	Extinction debt: a challenge for biodiversity conservation. Trends in Ecology and Evolution, 2009, 24, 564-571.	8.7	1,053
2	TRY plant trait database – enhanced coverage and open access. Global Change Biology, 2020, 26, 119-188.	9.5	1,038
3	Ecological assembly rules in plant communities—approaches, patterns and prospects. Biological Reviews, 2012, 87, 111-127.	10.4	717
4	Global assessment of arbuscular mycorrhizal fungus diversity reveals very low endemism. Science, 2015, 349, 970-973.	12.6	644
5	Habitat fragmentation causes immediate and timeâ€delayed biodiversity loss at different trophic levels. Ecology Letters, 2010, 13, 597-605.	6.4	620
6	Plant species richness: the world records. Journal of Vegetation Science, 2012, 23, 796-802.	2.2	600
7	Integrative modelling reveals mechanisms linking productivity and plant species richness. Nature, 2016, 529, 390-393.	27.8	564
8	Slow response of plant species richness to habitat loss and fragmentation. Ecology Letters, 2005, 9, 051109031307003.	6.4	437
9	The Species Pool and Its Relation to Species Richness: Evidence from Estonian Plant Communities. Oikos, 1996, 75, 111.	2.7	404
10	Global trait–environment relationships of plant communities. Nature Ecology and Evolution, 2018, 2, 1906-1917.	7.8	397
11	Dark diversity: shedding light on absent species. Trends in Ecology and Evolution, 2011, 26, 124-128.	8.7	275
12	Species richness of arbuscular mycorrhizal fungi: associations with grassland plant richness and biomass. New Phytologist, 2014, 203, 233-244.	7.3	256
13	LOCAL PLANT DIVERSITY PATTERNS AND EVOLUTIONARY HISTORY AT THE REGIONAL SCALE. Ecology, 2002, 83, 2361-2366.	3.2	225
14	Indicators of biodiversity and ecosystem services: a synthesis across ecosystems and spatial scales. Oikos, 2009, 118, 1862-1871.	2.7	225
15	Predicting species' maximum dispersal distances from simple plant traits. Ecology, 2014, 95, 505-513.	3.2	207
16	Functional species pool framework to test for biotic effects on community assembly. Ecology, 2012, 93, 2263-2273.	3.2	205
17	A synthesis of empirical plant dispersal kernels. Journal of Ecology, 2017, 105, 6-19.	4.0	177
18	Local loss and spatial homogenization of plant diversity reduce ecosystem multifunctionality. Nature Ecology and Evolution, 2018, 2, 50-56.	7.8	172

#	Article	IF	Citations
19	Agricultural Policies Exacerbate Honeybee Pollination Service Supply-Demand Mismatches Across Europe. PLoS ONE, 2014, 9, e82996.	2.5	171
20	Environmental heterogeneity, species diversity and co-existence at different spatial scales. Journal of Vegetation Science, 2010, 21, 796.	2.2	148
21	CONTRASTING PLANT PRODUCTIVITY–DIVERSITY RELATIONSHIPS ACROSS LATITUDE: THE ROLE OF EVOLUTIONARY HISTORY. Ecology, 2007, 88, 1091-1097.	3.2	145
22	Temperature and pH define the realised niche space of arbuscular mycorrhizal fungi. New Phytologist, 2021, 231, 763-776.	7.3	126
23	SoilTemp: A global database of nearâ€surface temperature. Global Change Biology, 2020, 26, 6616-6629.	9.5	122
24	Functional diversity through the mean trait dissimilarity: resolving shortcomings with existing paradigms and algorithms. Oecologia, 2016, 180, 933-940.	2.0	116
25	Erosion of global functional diversity across the tree of life. Science Advances, 2021, 7, .	10.3	114
26	Synchrony matters more than species richness in plant community stability at a global scale. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 24345-24351.	7.1	113
27	Global maps of soil temperature. Global Change Biology, 2022, 28, 3110-3144.	9.5	113
28	Small-scale plant species richness in calcareous grasslands determined by the species pool, community age and shoot density. Ecography, 1999, 22, 153-159.	4.5	111
29	Global gene flow releases invasive plants from environmental constraints on genetic diversity. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 4218-4227.	7.1	108
30	A biodiversity monitoring framework for practical conservation of grasslands and shrublands. Biological Conservation, 2010, 143, 9-17.	4.1	106
31	Plant species richness belowground: higher richness and new patterns revealed by nextâ€generation sequencing. Molecular Ecology, 2012, 21, 2004-2016.	3.9	105
32	Title is missing!. Landscape Ecology, 1999, 14, 187-196.	4.2	102
33	Fine-root traits in the global spectrum of plant form and function. Nature, 2021, 597, 683-687.	27.8	102
34	Temporal heterogeneity of soil moisture in grassland and forest. Journal of Ecology, 2003, 91, 234-239.	4.0	100
35	Restoration of species-rich limestone grassland communities from overgrown land: the importance of propagule availability. Ecological Engineering, 1998, 10, 275-286.	3.6	98
36	Grassland diversity related to the Late Iron Age human population density. Journal of Ecology, 2007, 95, 574-582.	4.0	95

#	Article	IF	CITATIONS
37	Which plant traits predict species loss in calcareous grasslands with extinction debt?. Diversity and Distributions, 2012, 18, 808-817.	4.1	94
38	Local Plant Diversity Patterns and Evolutionary History at the Regional Scale. Ecology, 2002, 83, 2361.	3.2	91
39	Indirect evidence for an extinction debt of grassland butterflies half century after habitat loss. Biological Conservation, 2010, 143, 1405-1413.	4.1	89
40	Alvar grasslands in Estonia: variation in species composition and community structure. Journal of Vegetation Science, 1999, 10, 561-570.	2.2	87
41	The formation of species pools: historical habitat abundance affects current local diversity. Global Ecology and Biogeography, 2011, 20, 251-259.	5.8	87
42	The dynamics of species richness in an experimentally restored calcareous grassland. Journal of Vegetation Science, 1996, 7, 203-210.	2.2	86
43	Grouping and prioritization of vascular plant species for conservation: combining natural rarity and management need. Biological Conservation, 2005, 123, 271-278.	4.1	84
44	Plant mycorrhizal status, but not type, shifts with latitude and elevation in Europe. Global Ecology and Biogeography, 2017, 26, 690-699.	5.8	84
45	Can limiting similarity increase invasion resistance? A metaâ€analysis of experimental studies. Oikos, 2013, 122, 649-656.	2.7	82
46	Phylogenetically Poor Plant Communities Receive More Alien Species, Which More Easily Coexist with Natives. American Naturalist, 2011, 177, 668-680.	2.1	79
47	Effect of habitat area and isolation on plant trait distribution in European forests and grasslands. Ecography, 2012, 35, 356-363.	4.5	78
48	The reciprocal relationship between competition and intraspecific trait variation. Journal of Ecology, 2016, 104, 1410-1420.	4.0	76
49	Which randomizations detect convergence and divergence in traitâ€based community assembly? A test of commonly used null models. Journal of Vegetation Science, 2016, 27, 1275-1287.	2.2	73
50	Estimating dark diversity and species pools: an empirical assessment of two methods. Methods in Ecology and Evolution, 2016, 7, 104-113.	5.2	72
51	Structure and function of the soil microbiome underlying N2O emissions from global wetlands. Nature Communications, 2022, 13, 1430.	12.8	72
52	Traits related to species persistence and dispersal explain changes in plant communities subjected to habitat loss. Diversity and Distributions, 2012, 18, 898-908.	4.1	70
53	Predicting invasion in grassland ecosystems: is exotic dominance the real embarrassment of richness?. Global Change Biology, 2013, 19, 3677-3687.	9.5	70
54	Dispersal limitation may result in the unimodal productivity-diversity relationship: a new explanation for a general pattern. Journal of Ecology, 2007, 95, 90-94.	4.0	69

#	Article	IF	Citations
55	What determines the relationship between plant diversity and habitat productivity?. Global Ecology and Biogeography, 2008, 17, 679-684.	5.8	69
56	Community Completeness: Linking Local and Dark Diversity within the Species Pool Concept. Folia Geobotanica, 2013, 48, 307-317.	0.9	69
57	Human influence lowers plant genetic diversity in communities with extinction debt. Journal of Ecology, 2009, 97, 1329-1336.	4.0	67
58	Historical biome distribution and recent human disturbance shape the diversity of arbuscular mycorrhizal fungi. New Phytologist, 2017, 216, 227-238.	7.3	66
59	Conservation of Northern European plant diversity: the correspondence with soil pH. Biological Conservation, 2004, 120, 525-531.	4.1	64
60	Macroecology of biodiversity: disentangling local and regional effects. New Phytologist, 2016, 211, 404-410.	7.3	63
61	A negative heterogeneity–diversity relationship found in experimental grassland communities. Oecologia, 2013, 173, 545-555.	2.0	60
62	Extirpation or Coexistence? Management of a Persistent Introduced Grass in a Prairie Restoration. Restoration Ecology, 2003, 11, 410-416.	2.9	59
63	Global database of plants with rootâ€symbiotic nitrogen fixation: Nod <scp>DB</scp> . Journal of Vegetation Science, 2018, 29, 560-568.	2.2	59
64	Microfragmentation concept explains non-positive environmental heterogeneity–diversity relationships. Oecologia, 2013, 171, 217-226.	2.0	57
65	Dark diversity in dry calcareous grasslands is determined by dispersal ability and stressâ€tolerance. Ecography, 2015, 38, 713-721.	4.5	57
66	Widespread homogenization of plant communities in the Anthropocene. Nature Communications, 2021, 12, 6983.	12.8	57
67	Microbial island biogeography: isolation shapes the life history characteristics but not diversity of root-symbiotic fungal communities. ISME Journal, 2018, 12, 2211-2224.	9.8	55
68	Species richness limitations in productive and oligotrophic plant communities. Oikos, 2000, 90, 191-193.	2.7	54
69	Applying the dark diversity concept to nature conservation. Conservation Biology, 2017, 31, 40-47.	4.7	54
70	Landscape―and smallâ€scale determinants of grassland species diversity: direct and indirect influences. Ecography, 2012, 35, 944-951.	4.5	52
71	Characteristic and derived diversity: implementing the species pool concept to quantify conservation condition of habitats. Diversity and Distributions, 2015, 21, 711-721.	4.1	52
72	Is Species Richness Dependent on the Neighbouring Stands? An Analysis of the Community Patterns in Mountain Grasslands of Central Argentina. Oikos, 1999, 87, 346.	2.7	50

#	Article	IF	CITATIONS
73	Why does the unimodal species richness–productivity relationship not apply to woody species: a lack of clonality or a legacy of tropical evolutionary history?. Global Ecology and Biogeography, 2008, 17, 320-326.	5.8	50
74	Novel insights into postâ€glacial vegetation change: functional and phylogenetic diversity in pollen records. Journal of Vegetation Science, 2015, 26, 911-922.	2.2	49
75	GrassPlot – a database of multi-scale plant diversity in Palaearctic grasslands. Phytocoenologia, 2018, 48, 331-347.	0.5	49
76	sPlotOpen – An environmentally balanced, openâ€access, global dataset of vegetation plots. Global Ecology and Biogeography, 2021, 30, 1740-1764.	5 . 8	49
77	Community ecology of absent species: hidden and dark diversity. Journal of Vegetation Science, 2014, 25, 1154-1159.	2.2	48
78	Bryophyte and vascular plant species richness in boreo-nemoral moist forests and mires. Biodiversity and Conservation, 2001, 10, 2153-2166.	2.6	47
79	Coâ€occurring grassland species vary in their responses to fineâ€scale soil heterogeneity. Journal of Vegetation Science, 2016, 27, 1012-1022.	2.2	44
80	ROOT DYNAMICS AND SPATIAL PATTERN IN PRAIRIE AND FOREST. Ecology, 2002, 83, 1199-1203.	3.2	43
81	Applying the dark diversity concept to plants at the European scale. Ecography, 2015, 38, 1015-1025.	4.5	41
82	Small-scale dynamics and species richness in successional alvar plant communities. Ecography, 1995, 18, 83-90.	4.5	40
83	Vascular Plants Facilitated Bryophytes in a Grassland Experiment. Plant Ecology, 2005, 180, 69-75.	1.6	40
84	Biodiversity and ecosystem functioning: It is time for dispersal experiments. Journal of Vegetation Science, 2006, 17, 543-547.	2.2	40
85	Functional and phylogenetic community assembly linked to changes in species diversity in a longâ€term resource manipulation experiment. Journal of Vegetation Science, 2013, 24, 843-852.	2.2	40
86	Relationships between species richness patterns in deciduous forests at the north Estonian limestone escarpment. Journal of Vegetation Science, 2003, 14, 773-780.	2.2	38
87	Monitoring of Biological Diversity: a Common-Ground Approach. Conservation Biology, 2007, 21, 313-317.	4.7	38
88	Extinction of threatened vertebrates will lead to idiosyncratic changes in functional diversity across the world. Nature Communications, 2021, 12, 5162.	12.8	38
89	Invasion of woody species into temperate grasslands: Relationship with abiotic and biotic soil resource heterogeneity. Journal of Vegetation Science, 2007, 18, 63-70.	2.2	36
90	Title is missing!. Plant Ecology, 2001, 157, 205-213.	1.6	35

#	Article	IF	CITATIONS
91	Benchmarking plant diversity of Palaearctic grasslands and other open habitats. Journal of Vegetation Science, 2021, 32, e13050.	2.2	34
92	Belowâ€ground plant species richness: new insights from <scp>DNA</scp> â€based methods. Functional Ecology, 2012, 26, 775-782.	3.6	33
93	The functional assembly of experimental grasslands in relation to fertility and resource heterogeneity. Functional Ecology, 2014, 28, 509-519.	3.6	33
94	The localâ€regional species richness relationship: new perspectives on the nullâ€hypothesis. Oikos, 2012, 121, 321-326.	2.7	32
95	Past and Present Effectiveness of Protected Areas for Conservation of Naturally and Anthropogenically Rare Plant Species. Conservation Biology, 2009, 23, 750-757.	4.7	31
96	Small-scale grassland assembly patterns differ above and below the soil surface. Ecology, 2012, 93, 1290-1296.	3.2	31
97	Measuring size and composition of species pools: a comparison of dark diversity estimates. Ecology and Evolution, 2016, 6, 4088-4101.	1.9	31
98	Determinants of fine-scale plant diversity in dry calcareous grasslands within the Baltic Sea region. Agriculture, Ecosystems and Environment, 2014, 182, 59-68.	5.3	29
99	Predicting species establishment using absent species and functional neighborhoods. Ecology and Evolution, 2017, 7, 2223-2237.	1.9	28
100	Withinâ€community environmental variability drives trait variability in speciesâ€rich grasslands. Journal of Vegetation Science, 2017, 28, 303-312.	2.2	28
101	Estimating probabilistic siteâ€specific species pools and dark diversity from coâ€occurrence data. Global Ecology and Biogeography, 2021, 30, 316-326.	5.8	28
102	Phylogenetic structure of local communities predicts the size of the regional species pool. Journal of Ecology, 2008, 96, 709-712.	4.0	27
103	The effects of species pool, dispersal and competition on the diversity–productivity relationship. Global Ecology and Biogeography, 2010, 19, 343-351.	5.8	27
104	Species pools, community completeness and invasion: disentangling diversity effects on the establishment of native and alien species. Ecology Letters, 2016, 19, 1496-1505.	6.4	27
105	Threatened herbaceous species dependent on moderate forest disturbances: A neglected target for ecosystem-based silviculture. Scandinavian Journal of Forest Research, 2005, 20, 145-152.	1.4	25
106	Establishment of protected areas in different ecoregions, ecosystems, and diversity hotspots under successive political systems. Biological Conservation, 2011, 144, 1726-1732.	4.1	24
107	The Neolithic Plant Invasion Hypothesis: the role of preadaptation and disturbance in grassland invasion. New Phytologist, 2018, 220, 94-103.	7.3	24
108	Root Dynamics and Spatial Pattern in Prairie and Forest. Ecology, 2002, 83, 1199.	3.2	23

#	Article	IF	CITATIONS
109	The productivity–diversity relationship: varying aims and approaches. Ecology, 2010, 91, 2565-2567.	3.2	22
110	Trait assembly in grasslands depends on habitat history and spatial scale. Oecologia, 2017, 184, 1-12.	2.0	21
111	Phenotypic plasticity masks rangeâ€wide genetic differentiation for vegetative but not reproductive traits in a shortâ€lived plant. Ecology Letters, 2021, 24, 2378-2393.	6.4	21
112	Largeâ€scale dark diversity estimates: new perspectives with combined methods. Ecology and Evolution, 2016, 6, 6266-6281.	1.9	20
113	Asymmetric patterns of global diversity among plants and mycorrhizal fungi. Journal of Vegetation Science, 2020, 31, 355-366.	2.2	20
114	Handbook of field sampling for multi-taxon biodiversity studies in European forests. Ecological Indicators, 2021, 132, 108266.	6.3	20
115	Spatially-Explicit Estimation of Geographical Representation in Large-Scale Species Distribution Datasets. PLoS ONE, 2014, 9, e85306.	2.5	19
116	Diversity of lichens and bryophytes in hybrid aspen plantations in Estonia depends on landscape structure. Canadian Journal of Forest Research, 2017, 47, 1202-1214.	1.7	19
117	Progress in vegetation science: Trends over the past three decades and new horizons. Journal of Vegetation Science, 2019, 30, 1-4.	2.2	19
118	Global soil microbiomes: A new frontline of biomeâ€ecology research. Global Ecology and Biogeography, 2022, 31, 1120-1132.	5.8	19
119	Root and leaf production, mortality and longevity in response to soil heterogeneity. Functional Ecology, 2001, 15, 748-753.	3.6	18
120	Pattern without bias: local–regional richness relationship revisited. Ecology, 2013, 94, 1986-1992.	3.2	17
121	Response to Comment on "Global assessment of arbuscular mycorrhizal fungus diversity reveals very low endemism― Science, 2016, 351, 826-826.	12.6	17
122	Grassland diversity under changing productivity and the underlying mechanisms – results of a 10â€yr experiment. Journal of Vegetation Science, 2012, 23, 919-930.	2.2	16
123	Forest biomass, soil and biodiversity relationships originate from biogeographic affinity and direct ecological effects. Oikos, 2019, 128, 1653-1665.	2.7	16
124	Delayed and immediate effects of habitat loss on the genetic diversity of the grassland plant Trifolium montanum. Biodiversity and Conservation, 2019, 28, 3299-3319.	2.6	16
125	Global macroecology of nitrogenâ€fixing plants. Global Ecology and Biogeography, 2021, 30, 514-526.	5.8	16
126	Vascular plant and bryophytes species representation in the protected areas network on the national scale. Biodiversity and Conservation, 2010, 19, 1353-1364.	2.6	15

#	Article	IF	Citations
127	Observed and dark diversity of alien plant species in Europe: estimating future invasion risk. Biodiversity and Conservation, 2017, 26, 899-916.	2.6	15
128	Directional trends in species composition over time can lead to a widespread overemphasis of yearâ€toâ€year asynchrony. Journal of Vegetation Science, 2020, 31, 792-802.	2.2	15
129	EstSoil-EH: a high-resolution eco-hydrological modelling parameters dataset for Estonia. Earth System Science Data, 2021, 13, 83-97.	9.9	15
130	Threatened Alvar Grasslands in NW Russia and their Relationship to Alvars in Estonia. Biodiversity and Conservation, 2006, 15, 1797-1809.	2.6	14
131	Temporal lags in observed and dark diversity in the Anthropocene. Global Change Biology, 2020, 26, 3193-3201.	9.5	14
132	Plant image identification application demonstrates high accuracy in Northern Europe. AoB PLANTS, 2021, 13, plab050.	2.3	14
133	Global taxonomic and phylogenetic assembly of AM fungi. Mycorrhiza, 2022, 32, 135-144.	2.8	14
134	The nature of vegetation science. Journal of Vegetation Science, 2010, 21, 1-5.	2.2	13
135	Extinction debt in a common grassland species: immediate and delayed responses of plant and population fitness. Plant Ecology, 2013, 214, 953-963.	1.6	13
136	Dispersal limitation determines largeâ€scale dark diversity in Central and Northern Europe. Journal of Biogeography, 2017, 44, 1770-1780.	3.0	13
137	Towards a Common Toolbox for Rarity: A Response to Violle et al Trends in Ecology and Evolution, 2017, 32, 889-891.	8.7	13
138	Dark diversity reveals importance of biotic resources and competition for plant diversity across habitats. Ecology and Evolution, 2020, 10, 6078-6088.	1.9	13
139	Small-scale dynamics of plant communities in an experimentally polluted and fungicide-treated subarctic birch-pine forest. Acta Oecologica, 1999, 20, 29-37.	1.1	12
140	Data availability forÂmacroecology: how toÂget more out ofÂregular ecological papers. Acta Oecologica, 2006, 30, 97-99.	1.1	11
141	Twentieth year of the <i>Journal of Vegetation Science</i> : the journal for all vegetation scientists. Journal of Vegetation Science, 2009, 20, 1-2.	2.2	11
142	Requirements of plant species are linked to area and determine species pool and richness on small islands. Journal of Vegetation Science, 2019, 30, 599-609.	2.2	11
143	Dominance, diversity, and niche breadth in arbuscular mycorrhizal fungal communities. Ecology, 2022, 103, e3761.	3.2	11
144	Expansion of a globally pervasive grass occurs without substantial trait differences between home and away populations. Oecologia, 2012, 170, 1123-1132.	2.0	10

#	Article	IF	CITATIONS
145	Plant diversity in Oceanic archipelagos: realistic patterns emulated by an agentâ€based computer simulation. Ecography, 2019, 42, 740-754.	4.5	10
146	Community completeness as a measure of restoration success: multiple-study comparisons across ecosystems and ecological groups. Biodiversity and Conservation, 2020, 29, 3807-3827.	2.6	10
147	Soil nitrogen and carbon heterogeneity in woodlands and grasslands: contrasts between temperate and tropical regions. Global Ecology and Biogeography, 2007, 17, 070618060123005-???.	5.8	9
148	Discerning the niche of dark diversity. Trends in Ecology and Evolution, 2011, 26, 265-266.	8.7	9
149	Response to Comment on "Worldwide evidence of a unimodal relationship between productivity and plant species richness― Science, 2015, 350, 1177-1177.	12.6	9
150	Mapping plant community ecology. Journal of Vegetation Science, 2017, 28, 1-3.	2.2	9
151	DarkDivNet – A global research collaboration to explore the dark diversity of plant communities. Journal of Vegetation Science, 2019, 30, 1039-1043.	2.2	9
152	Drivers of plant community completeness differ at regional and landscape scales. Agriculture, Ecosystems and Environment, 2020, 301, 107004.	5.3	9
153	Global Patterns in Local and Dark Diversity, Species Pool Size and Community Completeness in Ectomycorrhizal Fungi. Ecological Studies, 2017, , 395-406.	1.2	9
154	Environmentally Dependent Morphological Variability in Seven Apomictic Microspecies from Alchemilla L. (Rosaceae). Folia Geobotanica, 2009, 44, 159-176.	0.9	8
155	Landscape context and plant population size affect morph frequencies in heterostylous <i>Primula veris</i> Primula verisScience campaign. Journal of Ecology, 2020, 108, 2169-2183.	4.0	8
156	Traits as determinants of species abundance in a grassland community. Journal of Vegetation Science, 2021, 32, e13041.	2.2	8
157	The effect of stand age on biodiversity in a 130-year chronosequence of Populus tremula stands. Forest Ecology and Management, 2022, 504, 119833.	3.2	7
158	<i>Applied Vegetation Science $\langle i \rangle$ in 2016: the leading journal promoting the application of vegetation science. Applied Vegetation Science, 2016, 19, 1-2.</i>	1.9	6
159	Legacy of archipelago history in modern island biodiversity – An agentâ€based simulation model. Global Ecology and Biogeography, 2021, 30, 247-261.	5.8	6
160	Relationships between macro-fungal dark diversity and habitat parameters using LiDAR. Fungal Ecology, 2021, 51, 101054.	1.6	6
161	Biodiversity and ecosystem functioning: It is time for dispersal experiments. Journal of Vegetation Science, 2006, 17, 543.	2.2	5
162	Applied Vegetation Science in 2010: new opportunities for the vegetation scientists. Applied Vegetation Science, 2010, 13, 1-4.	1.9	4

#	Article	IF	Citations
163	All dispersal functions are wrong, but many are useful: A response to Cousens etÂal Journal of Ecology, 2018, 106, 907-910.	4.0	4
164	LOTVS: A global collection of permanent vegetation plots. Journal of Vegetation Science, 2022, 33, .	2.2	4
165	Competition, invasion effects versus invasiveness and fuzzy classification. Journal of Vegetation Science, 2011, 22, 1-5.	2.2	3
166	Functional types, climatic change and species richness. Journal of Vegetation Science, 2013, 24, 1-3.	2.2	3
167	<pre><scp>S</scp>ilver <scp>J</scp>ubilee of the journal and complexity of global change. Journal of Vegetation Science, 2014, 25, 1-3.</pre>	2.2	3
168	Spatial models and plant traits for conservation and restoration. Applied Vegetation Science, 2014, 17, 1-3.	1.9	3
169	How to publish a good journal in plant community ecology?. Journal of Vegetation Science, 2016, 27, 1-3.	2.2	3
170	Linking biodiversity to ecosystems: A task for plant community ecologists. Journal of Vegetation Science, 2018, 29, 1-3.	2.2	3
171	Integrating dark diversity and functional traits to enhance nature conservation of epiphytic lichens: a case study from Northern Italy. Biodiversity and Conservation, 2021, 30, 2565-2579.	2.6	3
172	Biodiversity Patterns along Ecological Gradients: Unifying \hat{I}^2 -Diversity Indices. PLoS ONE, 2014, 9, e110485.	2.5	3
173	Macroecology of vegetation—ÂLessons learnt from the Virtual Special Issue. Journal of Vegetation Science, 2022, 33, .	2.2	3
174	Dark diversity at home describes the success of crossâ€continent tree invasions. Diversity and Distributions, 2022, 28, 1202-1213.	4.1	3
175	<i>Applied Vegetation Science</i> enters its 20th year. Applied Vegetation Science, 2017, 20, 1-4.	1.9	2
176	Invasion of woody species into temperate grasslands: Relationship with abiotic and biotic soil resource heterogeneity. Journal of Vegetation Science, 2007, 18, 63.	2.2	2
177	Restoration and management of plant communities in <i>Applied Vegetation Science</i> . Applied Vegetation Science, 2022, 25, .	1.9	2
178	Plant diversity but not productivity is associated with community mycorrhization in temperate grasslands. Journal of Vegetation Science, 2022, 33, .	2.2	2
179	Collaboration networks and hot topics in the <i>Journal of Vegetation Science</i> Vegetation Science, 2022, 33, .	2.2	2
180	Journal development, vegetation survey and the restoration of invaded ecosystems. Applied Vegetation Science, 2011, 14, 1-5.	1.9	1

#	Article	IF	CITATIONS
181	Editors' Award, experimental approaches, functional traits and ecoinformatics. Journal of Vegetation Science, 2012, 23, 1-3.	2.2	1
182	Organic farming, vegetation restoration and survey. Applied Vegetation Science, 2013, 16, 1-4.	1.9	1
183	Transfer of scientific knowledge to practitioners: Do we need a reform of the journal policy?. Applied Vegetation Science, 2014, 17, 609-610.	1.9	1
184	Plant communities: their conservation assessment and surveys across continents and in the tropics. Applied Vegetation Science, 2015, 18, 1-2.	1.9	1
185	<i>Journal of Vegetation Science</i> in 2015: journal growth, celebrations and awards. Journal of Vegetation Science, 2015, 26, 1-3.	2.2	1
186	Applied vegetation science addresses emerging global issues. Applied Vegetation Science, 2019, 22, 1-2.	1.9	1
187	Thirty years of theÂJournal of Vegetation Science. Journal of Vegetation Science, 2020, 31, 1-2.	2.2	1
188	Seventy-year history of management using low-intensity harvesting methods: weak impact on biodiversity of hemiboreal Scots pine forests. Canadian Journal of Forest Research, 2020, 50, 1268-1280.	1.7	1
189	Applied Vegetation Science in 2020: Editorial. Applied Vegetation Science, 2020, 23, 1-2.	1.9	1
190	Effects of mutualistic and pathogenic soil mycobiota on forest ecosystem functioning: herbaceous phytometer growth on natural and sterilised soils. Ecological Indicators, 2021, 127, 107792.	6.3	1
191	A new publisher, and Editors' Award for 2008. Applied Vegetation Science, 2009, 12, 1-2.	1.9	О
192	Editors' Award, vegetation survey, remote sensing and restoration. Applied Vegetation Science, 2012, 15, 1-3.	1.9	0
193	Longâ€term investigations and experimental manipulations: Useful perspectives for applied vegetation studies. Applied Vegetation Science, 2018, 21, 1-2.	1.9	O
194	Vegetation science during hectic times. Journal of Vegetation Science, 2021, 32, e12965.	2.2	0
195	<i>Applied Vegetation Science</i> : Editorial 2021. Applied Vegetation Science, 2021, 24, e12540.	1.9	0
196	Using functional dissimilarity among species pools and communities to predict establishment of native and alien species. Journal of Vegetation Science, 2021, 32, e13062.	2.2	0