Liancheng Lei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5206403/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The role of pyroptosis in cancer: pro-cancer or pro-"host�. Cell Death and Disease, 2019, 10, 650.	6.3	556
2	A Method for Generation Phage Cocktail with Great Therapeutic Potential. PLoS ONE, 2012, 7, e31698.	2.5	200
3	LysGH15, a Novel Bacteriophage Lysin, Protects a Murine Bacteremia Model Efficiently against Lethal Methicillin-Resistant <i>Staphylococcus aureus</i> Infection. Journal of Clinical Microbiology, 2011, 49, 111-117.	3.9	141
4	Structural and Biochemical Characterization Reveals LysGH15 as an Unprecedented "EF-Hand-Like― Calcium-Binding Phage Lysin. PLoS Pathogens, 2014, 10, e1004109.	4.7	85
5	The Bacteriophage EF-P29 Efficiently Protects against Lethal Vancomycin-Resistant Enterococcus faecalis and Alleviates Gut Microbiota Imbalance in a Murine Bacteremia Model. Frontiers in Microbiology, 2017, 8, 837.	3.5	78
6	Identification and Characterization of Dpo42, a Novel Depolymerase Derived from the Escherichia coli Phage vB_EcoM_ECOO78. Frontiers in Microbiology, 2017, 8, 1460.	3.5	63
7	Proposal of Actinobacillus pleuropneumoniae serovar 19, and reformulation of previous multiplex PCRs for capsule-specific typing of all known serovars. Veterinary Microbiology, 2021, 255, 109021.	1.9	62
8	Three Capsular Polysaccharide Synthesis-Related Glucosyltransferases, GT-1, GT-2 and WcaJ, Are Associated With Virulence and Phage Sensitivity of Klebsiella pneumoniae. Frontiers in Microbiology, 2019, 10, 1189.	3.5	56
9	Combination Therapy of LysGH15 and Apigenin as a New Strategy for Treating Pneumonia Caused by Staphylococcus aureus. Applied and Environmental Microbiology, 2016, 82, 87-94.	3.1	51
10	LysGH15 kills Staphylococcus aureus without being affected by the humoral immune response or inducing inflammation. Scientific Reports, 2016, 6, 29344.	3.3	50
11	Necroptosis and its role in infectious diseases. Apoptosis: an International Journal on Programmed Cell Death, 2020, 25, 169-178.	4.9	50
12	Effects of nonesterified fatty acids on the synthesis and assembly of very low density lipoprotein in bovine hepatocytes in vitro. Journal of Dairy Science, 2014, 97, 1328-1335.	3.4	45
13	Characterization of Enterococcus faecium bacteriophage IME-EFm5 and its endolysin LysEFm5. Virology, 2016, 492, 11-20.	2.4	45
14	A guard-killer phage cocktail effectively lyses the host and inhibits the development of phage-resistant strains of Escherichia coli. Applied Microbiology and Biotechnology, 2018, 102, 971-983.	3.6	44
15	An Ointment Consisting of the Phage Lysin LysGH15 and Apigenin for Decolonization of Methicillin-Resistant Staphylococcus aureus from Skin Wounds. Viruses, 2018, 10, 244.	3.3	40
16	Enolase of Streptococcus Suis Serotype 2 Enhances Blood–Brain Barrier Permeability by Inducing IL-8 Release. Inflammation, 2016, 39, 718-726.	3.8	39
17	Endolysin LysEF-P10 shows potential as an alternative treatment strategy for multidrug-resistant Enterococcus faecalis infections. Scientific Reports, 2017, 7, 10164.	3.3	38
18	Mesoporous silica nanobeans dual-functionalized with AlEgens and leaning pillar[6]arene-based supramolecular switches for imaging and stimuli-responsive drug release. Chemical Communications, 2019, 55, 14099-14102.	4.1	36

#	Article	IF	CITATIONS
19	Antibacterial Effects of Phage Lysin LysGH15 on Planktonic Cells and Biofilms of Diverse Staphylococci. Applied and Environmental Microbiology, 2018, 84, .	3.1	34
20	The N-terminal and central domain of colicin A enables phage lysin to lyse Escherichia coli extracellularly. Antonie Van Leeuwenhoek, 2017, 110, 1627-1635.	1.7	32
21	Genome sequencing and analysis of an Escherichia coli phage vB_EcoM-ep3 with a novel lysin, Lysep3. Virus Genes, 2015, 50, 487-497.	1.6	31
22	Therapeutic effect of the YH6 phage in a murine hemorrhagic pneumonia model. Research in Microbiology, 2015, 166, 633-643.	2.1	31
23	Preventive effect of the phage VB-SavM-JYL01 on rabbit necrotizing pneumonia caused by Staphylococcus aureus. Veterinary Microbiology, 2019, 229, 72-80.	1.9	31
24	Therapeutic applications of lytic phages in human medicine. Microbial Pathogenesis, 2020, 142, 104048.	2.9	31
25	Thymol kills bacteria, reduces biofilm formation, and protects mice against a fatal infection of Actinobacillus pleuropneumoniae strain L20. Veterinary Microbiology, 2017, 203, 202-210.	1.9	30
26	The Adh adhesin domain is required for trimeric autotransporter Apa1-mediated Actinobacillus pleuropneumoniae adhesion, autoaggregation, biofilm formation and pathogenicity. Veterinary Microbiology, 2015, 177, 175-183.	1.9	29
27	A Smooth-Type, Phage-Resistant Klebsiella pneumoniae Mutant Strain Reveals that OmpC Is Indispensable for Infection by Phage GH-K3. Applied and Environmental Microbiology, 2018, 84, .	3.1	29
28	External lysis of Escherichia coli by a bacteriophage endolysin modified with hydrophobic amino acids. AMB Express, 2019, 9, 106.	3.0	29
29	Mannose-modified chitosan microspheres enhance OprF-OprI-mediated protection of mice against Pseudomonas aeruginosa infection via induction of mucosal immunity. Applied Microbiology and Biotechnology, 2015, 99, 667-680.	3.6	28
30	Therapeutic effect of Pseudomonas aeruginosa phage YH30 on mink hemorrhagic pneumonia. Veterinary Microbiology, 2016, 190, 5-11.	1.9	28
31	The antibacterial activity of E. coli bacteriophage lysin lysep3 is enhanced by fusing the Bacillus amyloliquefaciens bacteriophage endolysin binding domain D8 to the C-terminal region. Journal of Microbiology, 2017, 55, 403-408.	2.8	28
32	Biological properties and genomics analysis of vB_KpnS_GH-K3, a Klebsiella phage with a putative depolymerase-like protein. Virus Genes, 2019, 55, 696-706.	1.6	26
33	Isolation and identification of Salmonella pullorum bacteriophage YSP2 and its use as a therapy for chicken diarrhea. Virus Genes, 2018, 54, 446-456.	1.6	25
34	The Characteristics and Genome Analysis of vB_AviM_AVP, the First Phage Infecting Aerococcus viridans. Viruses, 2019, 11, 104.	3.3	24
35	Combination Therapy of Phage vB_KpnM_P-KP2 and Gentamicin Combats Acute Pneumonia Caused by K47 Serotype Klebsiella pneumoniae. Frontiers in Microbiology, 2021, 12, 674068.	3.5	24
36	Identification and characterization of HolGH15: the holin of Staphylococcus aureus bacteriophage GH15. Journal of General Virology, 2016, 97, 1272-1281.	2.9	24

#	Article	IF	CITATIONS
37	Adh enhances Actinobacillus pleuropneumoniae pathogenicity by binding to OR5M11 and activating p38 which induces apoptosis of PAMs and IL-8 release. Scientific Reports, 2016, 6, 24058.	3.3	23
38	Arginine Supplementation Recovered the IFN-γ-Mediated Decrease in Milk Protein and Fat Synthesis by Inhibiting the GCN2/eIF2α Pathway, Which Induces Autophagy in Primary Bovine Mammary Epithelial Cells. Molecules and Cells, 2016, 39, 410-417.	2.6	22
39	Specific Humoral Immune Response Induced by Propionibacterium acnes Can Prevent Actinobacillus pleuropneumoniae Infection in Mice. Vaccine Journal, 2014, 21, 407-416.	3.1	20
40	Enhancement of the direct antimicrobial activity of Lysep3 against Escherichia coli by inserting cationic peptides into its C terminus. Antonie Van Leeuwenhoek, 2017, 110, 347-355.	1.7	20
41	miRâ€31 shuttled by halofuginoneâ€induced exosomes suppresses MFCâ€7 cell proliferation by modulating the HDAC2/cell cycle signaling axis. Journal of Cellular Physiology, 2019, 234, 18970-18984.	4.1	20
42	Apa is a trimeric autotransporter adhesin of <i>Actinobacillus pleuropneumoniae</i> responsible for autoagglutination and host cell adherence. Journal of Basic Microbiology, 2012, 52, 598-607.	3.3	19
43	GCN2 controls the cellular checkpoint: potential target for regulating inflammation. Cell Death Discovery, 2018, 4, 20.	4.7	19
44	New findings on the function and potential applications of the trimeric autotransporter adhesin. Antonie Van Leeuwenhoek, 2015, 108, 1-14.	1.7	18
45	Genomic characterization of lytic Staphylococcus aureus phage GH15: providing new clues to intron shift in phages. Journal of General Virology, 2013, 94, 906-915.	2.9	17
46	Differential gene expression profiling of Actinobacillus pleuropneumoniae during induction of primary alveolar macrophage apoptosis in piglets. Microbial Pathogenesis, 2015, 78, 74-86.	2.9	17
47	Deposition and mobilization of viruses in unsaturated porous media: Roles of different interfaces and straining. Environmental Pollution, 2021, 270, 116072.	7.5	17
48	TGFâ€Î²1 promotes bovine mammary fibroblast proliferation through the ERK 1/2 signalling pathway. Cell Biology International, 2016, 40, 750-760.	3.0	16
49	Transport of Escherichia coli phage through saturated porous media considering managed aquifer recharge. Environmental Science and Pollution Research, 2018, 25, 6497-6513.	5.3	14
50	Arginine inhibits the malignant transformation induced by interferon-gamma through the NF-κB-GCN2/eIF2α signaling pathway in mammary epithelial cells in vitro and in vivo. Experimental Cell Research, 2018, 368, 236-247.	2.6	14
51	Selection of serotype-specific vaccine candidate genes in Actinobacillus pleuropneumoniae and heterologous immunization with Propionibacterium acnes. Vaccine, 2008, 26, 6274-6280.	3.8	13
52	TGF-β1 promotes Staphylococcus aureus adhesion to and invasion into bovine mammary fibroblasts via the ERK pathway. Microbial Pathogenesis, 2017, 106, 25-29.	2.9	13
53	Identification of proteins of Propionibacterium acnes for use as vaccine candidates to prevent infection by the pig pathogen Actinobacillus pleuropneumoniae. Vaccine, 2013, 31, 5269-5275.	3.8	12
54	The antimicrobial peptide MPX kills Actinobacillus pleuropneumoniae and reduces its pathogenicity in mice. Veterinary Microbiology, 2020, 243, 108634.	1.9	12

#	Article	IF	CITATIONS
55	Streptococcus suis serotype 2 enolase interaction with host brain microvascular endothelial cells and RPSA-induced apoptosis lead to loss of BBB integrity. Veterinary Research, 2021, 52, 30.	3.0	12
56	B cell cross-epitope of Propionibacterium acnes and Actinobacillus pleuropneumonia selected by phage display library can efficiently protect from Actinobacillus pleuropneumonia infection. Veterinary Microbiology, 2017, 205, 14-21.	1.9	11
57	Selection of Potential Virulence Factors Contributing to Streptococcus suis Serotype 2 Penetration into the Blood-Brain Barrier in an In Vitro Co-Culture Model. Journal of Microbiology and Biotechnology, 2017, 27, 161-170.	2.1	11
58	<i>Salmonella</i> Typhimurium strain expressing OprFâ€Oprl protects mice against fatal infection by <i>Pseudomonas aeruginosa</i> . Microbiology and Immunology, 2015, 59, 533-544.	1.4	10
59	Porcine circovirus type 2 promotes Actinobacillus pleuropneumoniae survival during coinfection of porcine alveolar macrophages by inhibiting ROS production. Veterinary Microbiology, 2019, 233, 93-101.	1.9	10
60	The Phage Holin HolGH15 Exhibits Potential As an Antibacterial Agent to ControlListeria monocytogenes. Foodborne Pathogens and Disease, 2020, 18, 574-581.	1.8	10
61	Rapid and sensitive detection of Staphylococcus aureus using biolayer interferometry technology combined with phage lysin LysGH15. Biosensors and Bioelectronics, 2022, 198, 113799.	10.1	10
62	Apa2H1, the first head domain of Apa2 trimeric autotransporter adhesin, activates mouse bone marrow-derived dendritic cells and immunization with Apa2H1 protects against Actinobacillus pleuropneumoniae infection. Molecular Immunology, 2017, 81, 108-117.	2.2	9
63	Therapeutic Efficacy of Phage P _{IZ} SAE-01E2 against Abortion Caused by Salmonella enterica Serovar Abortusequi in Mice. Applied and Environmental Microbiology, 2020, 86, .	3.1	9
64	Differences in pig respiratory tract and peripheral blood immune responses to Actinobacillus pleuropneumoniae. Veterinary Microbiology, 2020, 247, 108755.	1.9	9
65	Regulated lytic cell death in breast cancer. Cell Biology International, 2022, 46, 12-33.	3.0	9
66	Trimeric autotransporter adhesins contribute to Actinobacillus pleuropneumoniae pathogenicity in mice and regulate bacterial gene expression during interactions between bacteria and porcine primary alveolar macrophages. Antonie Van Leeuwenhoek, 2016, 109, 51-70.	1.7	8
67	Autophagy elicits a novel and prospect strategy to starve arginine-dependent tumors. Hepatobiliary Surgery and Nutrition, 2019, 8, 401-403.	1.5	8
68	Genomic differences between <i>Actinobacillus pleuropneumoniae</i> serotypes 1 and 3 and the diversity distribution among 15 serotypes. FEMS Microbiology Letters, 2010, 303, 147-155.	1.8	7
69	Characteristic Comparison of Meningitis and Non-meningitis of Streptococcus suis in an Experimentally Infected Porcine Model. Inflammation, 2018, 41, 368-377.	3.8	7
70	IFN-Î ³ Activates the TLR4-CCL5 Signaling Through Reducing Arginine Level, Leading to Enhanced Susceptibility of Bovine Mammary Epithelial Cells to Staphylococcus aureus. Inflammation, 2020, 43, 2209-2221.	3.8	7
71	Overexpression of AmpC Promotes Bacteriophage Lysis of Ampicillin-Resistant Escherichia coli. Frontiers in Microbiology, 2019, 10, 2973.	3.5	7
72	Rapid Detection and Typing of Actinobacillus pleuropneumoniae Serovars Directly From Clinical Samples: Combining FTA® Card Technology With Multiplex PCR. Frontiers in Veterinary Science, 2021, 8, 728660.	2.2	6

#	Article	IF	CITATIONS
73	Exosomes Derived from Bovine Mammary Epithelial Cells Treated with Transforming Growth Factor-β1 Inhibit the Proliferation of Bovine Macrophages. Journal of Interferon and Cytokine Research, 2019, 39, 752-759.	1.2	5
74	TGF-β1 promoted the infection of bovine mammary epithelial cells by Staphylococcus aureus through increasing expression of cells' fibronectin and integrin β1. Veterinary Microbiology, 2019, 237, 108420.	1.9	5
75	RPSA distribution and expression in tissues and immune cells of pathogen-infected mice. Microbial Pathogenesis, 2021, 152, 104609.	2.9	5
76	Ribosomal Protein SA-Positive Neutrophil Elicits Stronger Phagocytosis and Neutrophil Extracellular Trap Formation and Subdues Pro-Inflammatory Cytokine Secretion Against Streptococcus suis Serotype 2 Infection. Frontiers in Immunology, 2020, 11, 585399.	4.8	5
77	Caveolae/rafts protect human cerebral microvascular endothelial cells from Streptococcus suis serotype 2 α-enolase-mediated injury. Veterinary Microbiology, 2021, 254, 108981.	1.9	5
78	Impact of gene modification of phosphotransferase system on expression of glutamate dehydrogenase protein of <i>Streptococcus suis</i> in <i>Escherichia coli</i> . Biotechnology and Biotechnological Equipment, 2017, 31, 612-618.	1.3	4
79	Host HSPD1 Translocation from Mitochondria to the Cytoplasm Induced by Streptococcus suis Serovar 2 Enolase Mediates Apoptosis and Loss of Blood–Brain Barrier Integrity. Cells, 2022, 11, 2071.	4.1	4
80	Macrophages largely contribute to heterologous antiâ€ <i>Propionibacterium acnes</i> antibodyâ€mediated protection from <i>Actinobacillus pleuropneumoniae</i> infection in mice. Microbiology and Immunology, 2015, 59, 166-173.	1.4	3
81	Transcriptomic analysis of porcine PBMCs in response to Actinobacillus pleuropneumoniae reveals the dynamic changes of differentially expressed genes related to immuno-inflammatory responses. Antonie Van Leeuwenhoek, 2018, 111, 2371-2384.	1.7	3
82	Differential Protein Profiling of Cerebrospinal Fluid in Piglets with Severe Meningoencephalitis Caused by Streptococcus suis Type 2 Compared to Controls. Frontiers in Cellular and Infection Microbiology, 2018, 8, 35.	3.9	3
83	iTRAQ-based quantitative proteomic analysis of peripheral blood serum in piglets infected with Actinobacillus pleuropneumoniae. AMB Express, 2020, 10, 121.	3.0	3
84	IFN-γ ^{–/–} Mice Resist Actinobacillus pleuropneumoniae Infection by Promoting Early Lung IL-18 Release and PMN-I Accumulation. Infection and Immunity, 2021, 89, .	2.2	3
85	vB-ApyS-JF1, the First Trueperella pyogenes Phage, Shows Potential as an Alternative Treatment Strategy for Trueperella pyogenes Infections. Frontiers in Microbiology, 2021, 12, 736304.	3.5	3
86	Proteomics analysis of important molecules in serum from meningitic piglets caused by Streptococcus suis serotype 2. Journal of Infection in Developing Countries, 2020, 14, 502-510.	1.2	3
87	A novel lysin Ply1228 provides efficient protection against Streptococcus suis type 2 infection in a murine bacteremia model. Veterinary Microbiology, 2022, 268, 109425.	1.9	2
88	IL-5 enhances the resistance of Actinobacillus pleuropneumoniae infection in mice through maintaining appropriate levels of lung M2, PMN-II and highly effective neutrophil extracellular traps. Veterinary Microbiology, 2022, 269, 109438.	1.9	2
89	Genomic Differences Between Actinobacillus pleuropneumoniae Serotypes 5b and 3 and their Distribution and Transcription Among 15 Serotypes. Current Microbiology, 2011, 63, 327-31.	2.2	1
90	Molecular characterization of Toll-like receptor type-3 in mallard duck and its response to Newcastle disease virus infection. Environmental Science and Pollution Research, 2021, 28, 55786-55795.	5.3	1

#	Article	IF	CITATIONS
91	Recombinant tandem epitope vaccination provides cross protection against Actinobacillus pleuropneumoniae challenge in mice. AMB Express, 2020, 10, 123.	3.0	1
92	Complete genome for Actinobacillus pleuropneumoniae serovar 8 reference strain 405: comparative analysis with draft genomes for different laboratory stock cultures indicates little genetic variation. Microbial Genomics, 2021, 7, .	2.0	1
93	Dynamic immune response characteristics of piglets infected with Actinobacillus pleuropneumoniae through omic. AMB Express, 2021, 11, 175.	3.0	1