List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5205555/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Suppression of active phase voluntary wheel running in male rats by unilateral chronic constriction injury: Enduring therapeutic effects of a brief treatment of morphine combined with TLR4 or P2X7 antagonists. Journal of Neuroscience Research, 2022, 100, 265-277.	2.9	8
2	Preconditioning by voluntary wheel running attenuates later neuropathic pain via nuclear factor E2–related factor 2 antioxidant signaling in rats. Pain, 2022, 163, 1939-1951.	4.2	13
3	Postoperative cognitive dysfunction is made persistent with morphine treatment in aged rats. Neurobiology of Aging, 2021, 98, 214-224.	3.1	33
4	Experimental autoimmune encephalopathy (EAE)-induced hippocampal neuroinflammation and memory deficits are prevented with the non-opioid TLR2/TLR4 antagonist (+)-naltrexone. Behavioural Brain Research, 2021, 396, 112896.	2.2	16
5	Toll-like receptor 2 and 4 antagonism for the treatment of experimental autoimmune encephalomyelitis (EAE)-related pain. Brain, Behavior, and Immunity, 2021, 93, 80-95.	4.1	11
6	Nicotine and its metabolite cotinine target MD2 and inhibit TLR4 signaling. Innovation(China), 2021, 2, 100111.	9.1	10
7	T cell transgressions: Tales of T cell form and function in diverse disease states. International Reviews of Immunology, 2021, , 1-42.	3.3	3
8	Aging and miR-155 in mice influence survival and neuropathic pain after spinal cord injury. Brain, Behavior, and Immunity, 2021, 97, 365-370.	4.1	28
9	Autoimmune regulation of chronic pain. Pain Reports, 2021, 6, e905.	2.7	26
10	The behavioral and neurochemical effects of an inescapable stressor are time of day dependent. Stress, 2020, 23, 405-416.	1.8	5
11	Targeted interleukin-10 plasmid DNA therapy in the treatment of osteoarthritis: Toxicology and pain efficacy assessments. Brain, Behavior, and Immunity, 2020, 90, 155-166.	4.1	42
12	Acute stress induces the rapid and transient induction of caspase-1, gasdermin D and release of constitutive IL-11² protein in dorsal hippocampus. Brain, Behavior, and Immunity, 2020, 90, 70-80.	4.1	9
13	Activation of sphingosine-1-phosphate receptor subtype 1 in the central nervous system contributes to morphine-induced hyperalgesia and antinociceptive tolerance in rodents. Pain, 2020, 161, 2107-2118.	4.2	19
14	Acute stress induces chronic neuroinflammatory, microglial and behavioral priming: A role for potentiated NLRP3 inflammasome activation. Brain, Behavior, and Immunity, 2020, 89, 32-42.	4.1	28
15	Could Probiotics Be Used to Mitigate Neuroinflammation?. ACS Chemical Neuroscience, 2019, 10, 13-15.	3.5	25
16	Methamphetamine Activates Toll-Like Receptor 4 to Induce Central Immune Signaling within the Ventral Tegmental Area and Contributes to Extracellular Dopamine Increase in the Nucleus Accumbens Shell. ACS Chemical Neuroscience, 2019, 10, 3622-3634.	3.5	60
17	Stereochemistry and innate immune recognition: (+)â€norbinaltorphimine targets myeloid differentiation protein 2 and inhibits tollâ€like receptor 4 signaling. FASEB Journal, 2019, 33, 9577-9587. ————————————————————————————————————	0.5	16
18	Lovastatin inhibits Toll-like receptor 4 signaling in microglia by targeting its co-receptor myeloid differentiation protein 2 and attenuates neuropathic pain. Brain, Behavior, and Immunity, 2019, 82, 432-444.	4.1	37

#	Article	IF	CITATIONS
19	TDP-43 knockdown causes innate immune activation via protein kinase R in astrocytes. Neurobiology of Disease, 2019, 132, 104514.	4.4	37
20	Glucocorticoids mediate stress induction of the alarmin HMGB1 and reduction of the microglia checkpoint receptor CD200R1 in limbic brain structures. Brain, Behavior, and Immunity, 2019, 80, 678-687.	4.1	18
21	Oxycodone, fentanyl, and morphine amplify established neuropathic pain in male rats. Pain, 2019, 160, 2634-2640.	4.2	18
22	A single peri-sciatic nerve administration of the adenosine 2A receptor agonist ATL313 produces long-lasting anti-allodynia and anti-inflammatory effects in male rats. Brain, Behavior, and Immunity, 2019, 76, 116-125.	4.1	14
23	Microglia: Neuroimmune-sensors of stress. Seminars in Cell and Developmental Biology, 2019, 94, 176-185.	5.0	86
24	Spinal Cord Injury in Rats Dysregulates Diurnal Rhythms of Fecal Output and Liver Metabolic Indicators. Journal of Neurotrauma, 2019, 36, 1923-1934.	3.4	16
25	Circadian misalignment has differential effects on affective behavior following exposure to controllable or uncontrollable stress. Behavioural Brain Research, 2019, 359, 440-445.	2.2	16
26	Repeated Morphine Prolongs Postoperative Pain in Male Rats. Anesthesia and Analgesia, 2019, 128, 161-167.	2.2	33
27	Neuroinflammatory priming to stress is differentially regulated in male and female rats. Brain, Behavior, and Immunity, 2018, 70, 257-267.	4.1	85
28	Dissecting the Innate Immune Recognition of Opioid Inactive Isomer (+)-Naltrexone Derived Toll-like Receptor 4 (TLR4) Antagonists. Journal of Chemical Information and Modeling, 2018, 58, 816-825.	5.4	37
29	A novel platform for in vivo detection of cytokine release within discrete brain regions. Brain, Behavior, and Immunity, 2018, 71, 18-22.	4.1	28
30	Behavioural and neural sequelae of stressor exposure are not modulated by controllability in females. European Journal of Neuroscience, 2018, 47, 959-967.	2.6	37
31	MicroRNA-124 and microRNA-146a both attenuate persistent neuropathic pain induced by morphine in male rats. Brain Research, 2018, 1692, 9-11.	2.2	25
32	DREADDed microglia in pain: Implications for spinal inflammatory signaling in male rats. Experimental Neurology, 2018, 304, 125-131.	4.1	79
33	Sustained reversal of central neuropathic pain induced by a single intrathecal injection of adenosine A 2A receptor agonists. Brain, Behavior, and Immunity, 2018, 69, 470-479.	4.1	29
34	MicroRNAs: Roles in Regulating Neuroinflammation. Neuroscientist, 2018, 24, 221-245.	3.5	184
35	Toll-like receptors and their role in persistent pain. , 2018, 184, 145-158.		157
36	Protraction of neuropathic pain by morphine is mediated by spinal damage associated molecular patterns (DAMPs) in male rats. Brain, Behavior, and Immunity, 2018, 72, 45-50.	4.1	60

#	Article	IF	CITATIONS
37	Stress disinhibits microglia via down-regulation of CD200R: A mechanism of neuroinflammatory priming. Brain, Behavior, and Immunity, 2018, 69, 62-73.	4.1	58
38	Innate immune signaling in the ventral tegmental area contributes to drug-primed reinstatement of cocaine seeking. Brain, Behavior, and Immunity, 2018, 67, 130-138.	4.1	67
39	Post-stroke Intranasal (+)-Naloxone Delivery Reduces Microglial Activation and Improves Behavioral Recovery from Ischemic Injury. ENeuro, 2018, 5, ENEURO.0395-17.2018.	1.9	35
40	Immunization with Mycobacterium vaccae induces an anti-inflammatory milieu in the CNS: Attenuation of stress-induced microglial priming, alarmins and anxiety-like behavior. Brain, Behavior, and Immunity, 2018, 73, 352-363.	4.1	66
41	Mycobacterium vaccae immunization protects aged rats from surgery-elicited neuroinflammation and cognitive dysfunction. Neurobiology of Aging, 2018, 71, 105-114.	3.1	45
42	Spinal Cord Injury in Rats Disrupts the Circadian System. ENeuro, 2018, 5, ENEURO.0328-18.2018.	1.9	32
43	Behavioral assessment of neuropathic pain, fatigue, and anxiety in experimental autoimmune encephalomyelitis (EAE) and attenuation by interleukin-10 gene therapy. Brain, Behavior, and Immunity, 2017, 59, 49-54.	4.1	50
44	Opioid Self-Administration is Attenuated by Early-Life Experience and Gene Therapy for Anti-Inflammatory IL-10 in the Nucleus Accumbens of Male Rats. Neuropsychopharmacology, 2017, 42, 2128-2140.	5.4	30
45	Exploring acute-to-chronic neuropathic pain in rats after contusion spinal cord injury. Experimental Neurology, 2017, 295, 46-54.	4.1	42
46	Supradural inflammatory soup in awake and freely moving rats induces facial allodynia that is blocked by putative immune modulators. Brain Research, 2017, 1664, 87-94.	2.2	20
47	Constriction of the buccal branch of the facial nerve produces unilateral craniofacial allodynia. Brain, Behavior, and Immunity, 2017, 64, 59-64.	4.1	4
48	High-fat diet and aging interact to produce neuroinflammation and impair hippocampal- and amygdalar-dependent memory. Neurobiology of Aging, 2017, 58, 88-101.	3.1	138
49	Glucocorticoids Mediate Short-Term High-Fat Diet Induction of Neuroinflammatory Priming, the NLRP3 Inflammasome, and the Danger Signal HMGB1. ENeuro, 2016, 3, ENEURO.0113-16.2016.	1.9	54
50	Diminished circadian rhythms in hippocampal microglia may contribute to age-related neuroinflammatory sensitization. Neurobiology of Aging, 2016, 47, 102-112.	3.1	54
51	The Alarmin HMGB1 Mediates Age-Induced Neuroinflammatory Priming. Journal of Neuroscience, 2016, 36, 7946-7956.	3.6	103
52	Morphine amplifies mechanical allodynia via TLR4 in a rat model of spinal cord injury. Brain, Behavior, and Immunity, 2016, 58, 348-356.	4.1	58
53	Stable, long-term, spatial memory in young and aged rats achieved with a one day Morris water maze training protocol. Learning and Memory, 2016, 23, 699-702.	1.3	7
54	Nitroxidative Signaling Mechanisms in Pathological Pain. Trends in Neurosciences, 2016, 39, 862-879.	8.6	93

#	Article	IF	CITATIONS
55	HMGB1 Activates Proinflammatory Signaling via TLR5 Leading to Allodynia. Cell Reports, 2016, 17, 1128-1140.	6.4	125
56	Stress-induced neuroinflammatory priming: A liability factor in the etiology of psychiatric disorders. Neurobiology of Stress, 2016, 4, 62-70.	4.0	112
57	Morphine paradoxically prolongs neuropathic pain in rats by amplifying spinal NLRP3 inflammasome activation. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E3441-50.	7.1	292
58	Stress-induced neuroinflammatory priming is time of day dependent. Psychoneuroendocrinology, 2016, 66, 82-90.	2.7	58
59	The danger-associated molecular pattern HMGB1 mediates the neuroinflammatory effects of methamphetamine. Brain, Behavior, and Immunity, 2016, 51, 99-108.	4.1	60
60	The redox state of the alarmin HMGB1 is a pivotal factor in neuroinflammatory and microglial priming: A role for the NLRP3 inflammasome. Brain, Behavior, and Immunity, 2016, 55, 215-224.	4.1	106
61	Activation of a Habenulo–Raphe Circuit Is Critical for the Behavioral and Neurochemical Consequences of Uncontrollable Stress in the Male Rat. ENeuro, 2016, 3, ENEURO.0229-16.2016.	1.9	50
62	Structure–Activity Relationships of (+)-Naltrexone-Inspired Toll-like Receptor 4 (TLR4) Antagonists. Journal of Medicinal Chemistry, 2015, 58, 5038-5052.	6.4	77
63	Alcohol-induced sedation and synergistic interactions between alcohol and morphine: A key mechanistic role for Toll-like receptors and MyD88-dependent signaling. Brain, Behavior, and Immunity, 2015, 45, 245-252.	4.1	21
64	Greater glucocorticoid receptor activation in hippocampus of aged rats sensitizes microglia. Neurobiology of Aging, 2015, 36, 1483-1495.	3.1	62
65	Stress Induces the Danger-Associated Molecular Pattern HMGB-1 in the Hippocampus of Male Sprague Dawley Rats: A Priming Stimulus of Microglia and the NLRP3 Inflammasome. Journal of Neuroscience, 2015, 35, 316-324.	3.6	177
66	(+)-Naltrexone is neuroprotective and promotes alternative activation in the mouse hippocampus after cardiac arrest/cardiopulmonary resuscitation. Brain, Behavior, and Immunity, 2015, 48, 115-122.	4.1	27
67	Adenosine 2A receptor agonism: A single intrathecal administration attenuates motor paralysis in experimental autoimmune encephalopathy in rats. Brain, Behavior, and Immunity, 2015, 46, 50-54.	4.1	14
68	Stress sounds the alarmin: The role of the danger-associated molecular pattern HMGB1 in stress-induced neuroinflammatory priming. Brain, Behavior, and Immunity, 2015, 48, 1-7.	4.1	178
69	Select steroid hormone glucuronide metabolites can cause toll-like receptor 4 activation and enhanced pain. Brain, Behavior, and Immunity, 2015, 44, 128-136.	4.1	13
70	The role of hepatic and splenic macrophages in E. coli-induced memory impairments in aged rats. Brain, Behavior, and Immunity, 2015, 43, 60-67.	4.1	7
71	Microglia inflammatory responses are controlled by an intrinsic circadian clock. Brain, Behavior, and Immunity, 2015, 45, 171-179.	4.1	207
72	Learned stressor resistance requires extracellular signal-regulated kinase in the prefrontal cortex. Frontiers in Behavioral Neuroscience, 2014, 8, 348.	2.0	28

#	Article	IF	CITATIONS
73	Glial TLR4 signaling does not contribute to opioid-induced depression of respiration. Journal of Applied Physiology, 2014, 117, 857-868.	2.5	12
74	Discovery of a Novel Site of Opioid Action at the Innate Immune Pattern-Recognition Receptor TLR4 and its Role in Addiction. International Review of Neurobiology, 2014, 118, 129-163.	2.0	55
75	Pathological pain and the neuroimmune interface. Nature Reviews Immunology, 2014, 14, 217-231.	22.7	703
76	In vivo veritas: (+)-Naltrexone's actions define translational importance. Trends in Pharmacological Sciences, 2014, 35, 432-433.	8.7	16
77	High-fat diet consumption disrupts memory and primes elevations in hippocampal IL-1β, an effect that can be prevented with dietary reversal or IL-1 receptor antagonism. Brain, Behavior, and Immunity, 2014, 42, 22-32.	4.1	127
78	Systemic Administration of Propentofylline, Ibudilast, and (+)-Naltrexone Each Reverses Mechanical Allodynia in a Novel Rat Model of Central Neuropathic Pain. Journal of Pain, 2014, 15, 407-421.	1.4	45
79	Suppression of Voluntary Wheel Running in Rats Is Dependent onÂthe Site of Inflammation: Evidence for Voluntary Running as aÂMeasure of Hind Paw-Evoked Pain. Journal of Pain, 2014, 15, 121-128.	1.4	42
80	A concern on comparing â€~apples' and â€~oranges' when differences between microglia used in human a rodent studies go far, far beyond simply species: comment on Smith and Dragunow. Trends in Neurosciences, 2014, 37, 189-190.	ind 8.6	12
81	Chronic exposure to exogenous glucocorticoids primes microglia to pro-inflammatory stimuli and induces NLRP3 mRNA in the hippocampus. Psychoneuroendocrinology, 2014, 40, 191-200.	2.7	136
82	Stress-induced glucocorticoids as a neuroendocrine alarm signal of danger. Brain, Behavior, and Immunity, 2013, 33, 1-6.	4.1	132
83	Commentary on Landry et al.: "Propentofylline, a CNS glial modulator, does not decrease pain in post-herpetic neuralgia patients: In vitro evidence for differential responses in human and rodent microglia and macrophages― Experimental Neurology, 2012, 234, 351-353.	4.1	19
84	Inside Cover: An MD2 Hotâ€6potâ€Mimicking Peptide that Suppresses TLR4â€Mediated Inflammatory Response in vitro and in vivo (ChemBioChem 12/2011). ChemBioChem, 2011, 12, 1786-1786.	2.6	0
85	The "Toll―of Opioid-Induced Glial Activation: Improving the Clinical Efficacy of Opioids by Targeting Glia. Trends in Pharmacological Sciences, 2009, 30, 581-591.	8.7	353
86	Glia as the "bad guys― Implications for improving clinical pain control and the clinical utility of opioids. Brain, Behavior, and Immunity, 2007, 21, 131-146.	4.1	306
87	"Listening―and "talking―to neurons: Implications of immune activation for pain control and increasing the efficacy of opioids. Brain Research Reviews, 2007, 56, 148-169.	9.0	162
88	The Persistent Sciatic Inflammatory Neuropathy (SIN) Rat Model of Neuropathic Pain Does Not Involve Small-Fiber Axon Damage. Journal of Neuropathic Pain & Symptom Palliation, 2006, 2, 41-47.	0.1	0
89	Glia: novel counter-regulators of opioid analgesia. Trends in Neurosciences, 2005, 28, 661-669.	8.6	303
90	GLIA: A novel drug discovery target for clinical pain. Nature Reviews Drug Discovery, 2003, 2, 973-985.	46.4	592

#	Article	IF	CITATIONS
91	Beyond Neurons: Evidence That Immune and Glial Cells Contribute to Pathological Pain States. Physiological Reviews, 2002, 82, 981-1011.	28.8	661
92	The contribution of the vagus nerve in interleukin-1β-induced fever is dependent on dose. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2001, 280, R929-R934.	1.8	133