Kwang-Hee Bae

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5204500/publications.pdf

Version: 2024-02-01

123 papers

4,293 citations

32 h-index 58 g-index

124 all docs

 $\begin{array}{c} 124 \\ \text{docs citations} \end{array}$

times ranked

124

7088 citing authors

#	Article	IF	CITATIONS
1	A Lactate-Induced Response to Hypoxia. Cell, 2015, 161, 595-609.	28.9	364
2	RPA governs endonuclease switching during processing of Okazaki fragments in eukaryotes. Nature, 2001, 412, 456-461.	27.8	315
3	Quantitative proteomic analyses reveal that GPX4 downregulation during myocardial infarction contributes to ferroptosis in cardiomyocytes. Cell Death and Disease, 2019, 10, 835.	6.3	203
4	Polyunsaturated fatty acid biosynthesis pathway determines ferroptosis sensitivity in gastric cancer. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 32433-32442.	7.1	200
5	Distinction of white, beige and brown adipocytes derived from mesenchymal stem cells. World Journal of Stem Cells, 2014, 6, 33.	2.8	193
6	Human zinc fingers as building blocks in the construction of artificial transcription factors. Nature Biotechnology, 2003, 21, 275-280.	17.5	184
7	The Role of Adipose Tissue Mitochondria: Regulation of Mitochondrial Function for the Treatment of Metabolic Diseases. International Journal of Molecular Sciences, 2019, 20, 4924.	4.1	159
8	Metabolic Adaptation in Obesity and Type II Diabetes: Myokines, Adipokines and Hepatokines. International Journal of Molecular Sciences, 2017, 18, 8.	4.1	148
9	Lipid Metabolism and Ferroptosis. Biology, 2021, 10, 184.	2.8	115
10	Acetylation of malate dehydrogenase 1 promotes adipogenic differentiation via activating its enzymatic activity. Journal of Lipid Research, 2012, 53, 1864-1876.	4.2	74
11	Annexin A4 interacts with the NF-κB p50 subunit and modulates NF-κB transcriptional activity in a Ca2+-dependent manner. Cellular and Molecular Life Sciences, 2010, 67, 2271-2281.	5.4	64
12	Regulation of adipogenic differentiation by LAR tyrosine phosphatase in human mesenchymal stem cells and 3T3-L1 preadipocytes. Journal of Cell Science, 2009, 122, 4160-4167.	2.0	60
13	Bimodal interaction between replication-protein A and Dna2 is critical for Dna2 function both in vivo and in vitro. Nucleic Acids Research, 2003, 31, 3006-3015.	14.5	56
14	Metabolic Spectrum of Liver Failure in Type 2 Diabetes and Obesity: From NAFLD to NASH to HCC. International Journal of Molecular Sciences, 2021, 22, 4495.	4.1	56
15	Two distinct cellular pathways leading to endothelial cell cytotoxicity by silica nanoparticle size. Journal of Nanobiotechnology, 2019, 17, 24.	9.1	54
16	Co-chaperone CHIP promotes aggregation of ataxin-1. Molecular and Cellular Neurosciences, 2007, 34, 69-79.	2.2	53
17	Myostatin inhibits brown adipocyte differentiation via regulation of Smad3-mediated \hat{l}^2 -catenin stabilization. International Journal of Biochemistry and Cell Biology, 2012, 44, 327-334.	2.8	51
18	Loss of the E3 ubiquitin ligase MKRN1 represses diet-induced metabolic syndrome through AMPK activation. Nature Communications, 2018, 9, 3404.	12.8	50

#	Article	IF	CITATIONS
19	Graphene oxide induces apoptotic cell death in endothelial cells by activating autophagy via calcium-dependent phosphorylation of c-Jun N-terminal kinases. Acta Biomaterialia, 2016, 46, 191-203.	8.3	49
20	Identification of DNA Aptamers toward Epithelial Cell Adhesion Molecule via Cell-SELEX. Molecules and Cells, 2014, 37, 742-746.	2.6	48
21	Mitochondrial Transplantation as a Novel Therapeutic Strategy for Mitochondrial Diseases. International Journal of Molecular Sciences, 2021, 22, 4793.	4.1	46
22	Structural basis for recognition of the tumor suppressor protein PTPN14 by the oncoprotein E7 of human papillomavirus. PLoS Biology, 2019, 17, e3000367.	5.6	45
23	Dual-site Interactions of p53 Protein Transactivation Domain with Anti-apoptotic Bcl-2 Family Proteins Reveal a Highly Convergent Mechanism of Divergent p53 Pathways. Journal of Biological Chemistry, 2013, 288, 7387-7398.	3.4	42
24	Dual roles of ULK1 (unc-51 like autophagy activating kinase 1) in cytoprotection against lipotoxicity. Autophagy, 2020, 16, 86-105.	9.1	41
25	Loss of NDRG2 promotes epithelial-mesenchymal transition of gallbladder carcinoma cells through MMP-19-mediated Slug expression. Journal of Hepatology, 2015, 63, 1429-1439.	3.7	40
26	Glycoproteomic analysis of plasma from patients with atopic dermatitis: CD5L and ApoE as potential biomarkers. Experimental and Molecular Medicine, 2008, 40, 677.	7.7	38
27	Retinoic acid inhibits adipogenesis via activation of Wnt signaling pathway in 3T3-L1 preadipocytes. Biochemical and Biophysical Research Communications, 2013, 434, 455-459.	2.1	37
28	Molecular Mimicry-Based Repositioning of Nutlin-3 to Anti-Apoptotic Bcl-2 Family Proteins. Journal of the American Chemical Society, 2011, 133, 1244-1247.	13.7	36
29	Molecular interaction between HAX-1 and XIAP inhibits apoptosis. Biochemical and Biophysical Research Communications, 2010, 393, 794-799.	2.1	34
30	The wheat chloroplastic proteome. Journal of Proteomics, 2013, 93, 326-342.	2.4	33
31	DUSP4 Regulates Neuronal Differentiation and Calcium Homeostasis by Modulating ERK1/2 Phosphorylation. Stem Cells and Development, 2015, 24, 686-700.	2.1	33
32	HS 1-associated protein X-1 is cleaved by caspase-3 during apoptosis. Molecules and Cells, 2008, 25, 86-90.	2.6	33
33	Effects of Leptin on Lipid Metabolism and Gene Expression of Differentiation-Associated Growth Factors and Transcription Factors during Differentiation and Maturation of 3T3-L1 Preadipocytes. Endocrine Journal, 2008, 55, 827-837.	1.6	32
34	Chemokine (C-X-C Motif) Ligand 12 Is Associated with Gallbladder Carcinoma Progression and Is a Novel Independent Poor Prognostic Factor. Clinical Cancer Research, 2012, 18, 3270-3280.	7.0	31
35	Recent Advances in Proteomic Studies of Adipose Tissues and Adipocytes. International Journal of Molecular Sciences, 2015, 16, 4581-4599.	4.1	31
36	Glutathione peroxidase 3 of Saccharomyces cerevisiae regulates the activity of methionine sulfoxide reductase in a redox state-dependent way. Biochemical and Biophysical Research Communications, 2006, 348, 25-35.	2.1	30

3

#	Article	IF	Citations
37	Phosphoproteomic analysis of neuronal cell death by glutamateâ€induced oxidative stress. Proteomics, 2007, 7, 2624-2635.	2.2	30
38	Ginkgetin, a biflavone from Ginkgo biloba leaves, prevents adipogenesis through STAT5-mediated PPARÎ 3 and C/EBPÎ $^\pm$ regulation. Pharmacological Research, 2019, 139, 325-336.	7.1	30
39	The roles of ubiquitination in extrinsic cell death pathways and its implications for therapeutics. Biochemical Pharmacology, 2019, 162, 21-40.	4.4	30
40	Involvement of PTP-RQ in differentiation during adipogenesis of human mesenchymal stem cells. Biochemical and Biophysical Research Communications, 2009, 383, 252-257.	2.1	29
41	Caspase-7 mediated cleavage of proteasome subunits during apoptosis. Biochemical and Biophysical Research Communications, 2007, 363, 388-394.	2.1	28
42	c-Jun regulates adipocyte differentiation via the KLF15-mediated mode. Biochemical and Biophysical Research Communications, 2016, 469, 552-558.	2.1	28
43	Proteomic analysis of liver tissue from <i>HBx</i> à€transgenic mice at early stages of hepatocarcinogenesis. Proteomics, 2009, 9, 5056-5066.	2.2	27
44	Brief Report: L1 Cell Adhesion Molecule, a Novel Surface Molecule of Human Embryonic Stem cells, Is Essential for Self-Renewal and Pluripotency. Stem Cells, 2011, 29, 2094-2099.	3.2	27
45	Phosphoprotein phosphatase 1CB (PPP1CB), a novel adipogenic activator, promotes 3T3-L1 adipogenesis. Biochemical and Biophysical Research Communications, 2015, 467, 211-217.	2.1	26
46	Involvement of protein tyrosine phosphatases in adipogenesis: New anti-obesity targets?. BMB Reports, 2012, 45, 700-706.	2.4	26
47	Protein disulfide isomerase is cleaved by caspase-3 and -7 during apoptosis. Molecules and Cells, 2007, 24, 261-7.	2.6	26
48	Structural convergence of unstructured p53 family transactivation domains in MDM2 recognition. Cell Cycle, 2015, 14, 533-543.	2.6	25
49	<p>A reliable approach for assessing size-dependent effects of silica nanoparticles on cellular internalization behavior and cytotoxic mechanisms</p> . International Journal of Nanomedicine, 2019, Volume 14, 7375-7387.	6.7	25
50	Comparative Proteomic Analysis of Human Somatic Cells, Induced Pluripotent Stem Cells, and Embryonic Stem Cells. Stem Cells and Development, 2012, 21, 1272-1286.	2.1	24
51	A Conserved Mechanism for Binding of p53 DNA-Binding Domain and Anti-Apoptotic Bcl-2 Family Proteins. Molecules and Cells, 2014, 37, 264-269.	2.6	24
52	HDAC11 Inhibits Myoblast Differentiation through Repression of MyoD-Dependent Transcription. Molecules and Cells, 2017, 40, 667-676.	2.6	24
53	Dual-Specificity Phosphatase 10 Controls Brown Adipocyte Differentiation by Modulating the Phosphorylation of P38 Mitogen-Activated Protein Kinase. PLoS ONE, 2013, 8, e72340.	2.5	23
54	Selection of Aptamers for Mature White Adipocytes by Cell SELEX Using Flow Cytometry. PLoS ONE, 2014, 9, e97747.	2.5	23

#	Article	IF	CITATIONS
55	RPTPÎ $\frac{1}{4}$ tyrosine phosphatase promotes adipogenic differentiation via modulation of p120 catenin phosphorylation. Molecular Biology of the Cell, 2011, 22, 4883-4891.	2.1	22
56	Aberrant L1 Cell Adhesion Molecule Affects Tumor Behavior and Chemosensitivity in Anaplastic Thyroid Carcinoma. Clinical Cancer Research, 2012, 18, 3071-3078.	7.0	22
57	DSG2 Is a Functional Cell Surface Marker for Identification and Isolation ofÂHuman Pluripotent Stem Cells. Stem Cell Reports, 2018, 11, 115-127.	4.8	21
58	Isolation of Foreign Material-Free Endothelial Progenitor Cells Using CD31 Aptamer and Therapeutic Application for Ischemic Injury. PLoS ONE, 2015, 10, e0131785.	2.5	21
59	Interaction of a putative BH3 domain of clusterin with anti-apoptotic Bcl-2 family proteins as revealed by NMR spectroscopy. Biochemical and Biophysical Research Communications, 2011, 408, 541-547.	2.1	20
60	Investigation of adipocyte proteome during the differentiation of brown preadipocytes. Journal of Proteomics, 2013, 94, 327-336.	2.4	20
61	Kallikrein-related peptidase 6 induces chemotherapeutic resistance by attenuating auranofin-induced cell death through activation of autophagy in gastric cancer. Oncotarget, 2016, 7, 85332-85348.	1.8	20
62	Acceleration of adipogenic differentiation via acetylation of malate dehydrogenase 2. Biochemical and Biophysical Research Communications, 2013, 441, 77-82.	2.1	19
63	The Latest Insights into Adipokines in Diabetes. Journal of Clinical Medicine, 2019, 8, 1874.	2.4	19
64	Large-scale preparation of active caspase-3 in E. coli by designing its thrombin-activatable precursors. BMC Biotechnology, 2008, 8, 92.	3.3	17
65	Comparative Proteomic Analysis of Mouse Melanoma Cell Line B16, a Metastatic Descendant B16F10, and B16 Overexpressing the Metastasis-Associated Tyrosine Phosphatase PRL-3. Oncology Research, 2009, 17, 601-612.	1.5	17
66	Identification of MYC as an antinecroptotic protein that stifles RIPK1–RIPK3 complex formation. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 19982-19993.	7.1	17
67	Nurr1 performs its anti-inflammatory function by regulating RasGRP1 expression in neuro-inflammation. Scientific Reports, 2020, 10, 10755.	3.3	17
68	Glyceraldehyde-3-Phosphate, a Glycolytic Intermediate, Plays a Key Role in Controlling Cell Fate Via Inhibition of Caspase Activity. Molecules and Cells, 2009, 28, 559-564.	2.6	16
69	The S-Nitrosylation of Glyceraldehyde-3-Phosphate Dehydrogenase 2 Is Reduced by Interaction with Glutathione Peroxidase 3 in Saccharomyces cerevisiae. Molecules and Cells, 2011, 31, 255-259.	2.6	16
70	Comparative proteomic analysis of peripheral blood mononuclear cells from atopic dermatitis patients and healthy donors. BMB Reports, 2008, 41, 597-603.	2.4	16
71	Confirmation of Frm2 as a novel nitroreductase in Saccharomyces cerevisiae. Biochemical and Biophysical Research Communications, 2012, 423, 638-641.	2.1	15
72	Cytoplasmic pro-apoptotic function of the tumor suppressor p73 is mediated through a modified mode of recognition of the anti-apoptotic regulator Bcl-XL. Journal of Biological Chemistry, 2018, 293, 19546-19558.	3.4	15

#	Article	IF	CITATIONS
73	IDH1-dependent α-KG regulates brown fat differentiation and function by modulating histone methylation. Metabolism: Clinical and Experimental, 2020, 105, 154173.	3.4	15
74	Ginsenoside Rb1 is transformed into Rd and Rh2 by Microbacterium trichothecenolyticum. Journal of Microbiology and Biotechnology, 2013, 23, 1802-1805.	2.1	15
75	Stimulation of angiogenesis and survival of endothelial cells by human monoclonal Tie2 receptor antibody. Biomaterials, 2015, 51, 119-128.	11.4	14
76	Set7/9, a methyltransferase, regulates the thermogenic program during brown adipocyte differentiation through the modulation of p53 acetylation. Molecular and Cellular Endocrinology, 2016, 431, 46-53.	3.2	14
77	Myonectin inhibits adipogenesis in 3T3-L1 preadipocytes by regulating p38 MAPK pathway. BMB Reports, 2021, 54, 124-129.	2.4	14
78	Glyceraldehyde-3-Phosphate, a Glycolytic Intermediate, Prevents Cells from Apoptosis by Lowering S-Nitrosylation of Glyceraldehyde-3-Phosphate Dehydrogenase. Journal of Microbiology and Biotechnology, 2012, 22, 571-573.	2.1	14
79	Methyltransferase and demethylase profiling studies during brown adipocyte differentiation. BMB Reports, 2016, 49, 388-393.	2.4	14
80	Differential signatures of protein glycosylation and phosphorylation in human Chang liver cells induced by TCDD treatment. Toxicology Letters, 2008, 178, 20-28.	0.8	13
81	Rapid differentiation of astrocytes from human embryonic stem cells. Neuroscience Letters, 2020, 716, 134681.	2.1	13
82	Phosphoproteomic analysis of electroacupuncture analgesia in an inflammatory pain rat model. Molecular Medicine Reports, 2012, 6, 157-62.	2.4	12
83	GATA3 induces the upregulation of UCP-1 by directly binding to PGC-1α during adipose tissue browning. Metabolism: Clinical and Experimental, 2020, 109, 154280.	3.4	12
84	Extension of the in vivo half-life of endostatin and its improved anti-tumor activities upon fusion to a humanized antibody against tumor-associated glycoprotein 72 in a mouse model of human colorectal carcinoma. Oncotarget, 2015, 6, 7182-7194.	1.8	12
85	A proteomic analysis of the effect of mapk pathway activation on l-glutamate-induced neuronal cell death. Cellular and Molecular Biology Letters, 2007, 12, 139-47.	7.0	11
86	Ischemiaâ€induced Netrinâ€4 promotes neovascularization through endothelial progenitor cell activation via Uncâ€5 Netrin receptor B. FASEB Journal, 2020, 34, 1231-1246.	0.5	11
87	HAX1 regulates E3 ubiquitin ligase activity of cIAPs by promoting their dimerization. Oncotarget, 2014, 5, 10084-10099.	1.8	11
88	Mining of caspase-7 substrates using a degradomic approach. Molecules and Cells, 2008, 26, 152-7.	2.6	11
89	Efficient selection of IgG Fc domain-binding peptides fused to fluorescent protein using E. coli expression system and dot-blotting assay. Peptides, 2010, 31, 202-206.	2.4	10
90	The transcription factor PITX1 drives astrocyte differentiation by regulating the SOX9 gene. Journal of Biological Chemistry, 2020, 295, 13677-13690.	3.4	10

#	Article	IF	CITATIONS
91	Histone H4 is cleaved by granzyme A during staurosporine-induced cell death in B-lymphoid Raji cells. BMB Reports, 2016, 49, 560-565.	2.4	10
92	Reduced formation of advanced glycation endproducts via interactions between glutathione peroxidase 3 and dihydroxyacetone kinase 1. Biochemical and Biophysical Research Communications, 2009, 389, 177-180.	2.1	9
93	Leukocyte Common Antigen-Related (LAR) Tyrosine Phosphatase Positively Regulates Osteoblast Differentiation by Modulating Extracellular Signal-Regulated Kinase (ERK) Activation. Molecules and Cells, 2010, 30, 335-340.	2.6	9
94	Protein Tyrosine Phosphatase, Receptor Type B (PTPRB) Inhibits Brown Adipocyte Differentiation through Regulation of VEGFR2 Phosphorylation. Journal of Microbiology and Biotechnology, 2019, 29, 645-650.	2.1	9
95	Proteomic analysis of the effect of retinoic acids on the human breast cancer cell line MCF-7. Molecular Biology Reports, 2014, 41, 3499-3507.	2.3	8
96	Silica nanoparticles inhibit brown adipocyte differentiation via regulation of p38 phosphorylation. Nanotechnology, 2015, 26, 435101.	2.6	8
97	Selective elimination of human pluripotent stem cells by Anti-Dsg2 antibody-doxorubicin conjugates. Biomaterials, 2020, 259, 120265.	11.4	8
98	Identification of Lactoferrin as a Human Dedifferentiation Factor Through the Studies of Reptile Tissue Regeneration Mechanisms. Journal of Microbiology and Biotechnology, 2014, 24, 869-878.	2.1	8
99	Gpx3-dependent responses against oxidative stress in Saccharomyces cerevisiae. Journal of Microbiology and Biotechnology, 2008, 18, 270-82.	2.1	8
100	Interactome analysis of yeast glutathione peroxidase 3. Journal of Microbiology and Biotechnology, 2008, 18, 1364-7.	2.1	8
101	Glutathione peroxidase 3 of Saccharomyces cerevisiae suppresses non-enzymatic proteolysis of glutamine synthetase in an activity-independent manner. Biochemical and Biophysical Research Communications, 2007, 362, 405-409.	2.1	7
102	Molecular insight into the role of the leucine residue on the L2 loop in the catalytic activity of caspases 3 and 7. Bioscience Reports, 2012, 32, 305-313.	2.4	7
103	MAP kinase phosphatase 3 inhibits brown adipocyte differentiation via regulation of Erk phosphorylation. Molecular and Cellular Endocrinology, 2015, 416, 70-76.	3.2	7
104	Profiling analysis of protein tyrosine phosphatases during neuronal differentiation. Neuroscience Letters, 2016, 612, 219-224.	2.1	7
105	RKIP Downregulation Induces the HBx-Mediated Raf-1 Mitochondrial Translocation. Journal of Microbiology and Biotechnology, 2011, 21, 525-528.	2.1	7
106	Protein Tyrosine Phosphatase Profiling Analysis of HIB-1B Cells during Brown Adipogenesis. Journal of Microbiology and Biotechnology, 2012, 22, 1029-1033.	2.1	7
107	Phosphoproteomic Analysis of AML14.3D10 Cell Line as a Model System of Eosinophilia. BMB Reports, 2007, 40, 765-772.	2.4	7
108	Protein tyrosine phosphatase profiling studies during brown adipogenic differentiation of mouse primary brown preadipocytes. BMB Reports, 2013, 46, 539-543.	2.4	7

7

#	Article	IF	Citations
109	Monitoring of adipogenic differentiation at the single-cell level using atomic force microscopic analysis. Spectroscopy, 2011, 26, 329-335.	0.8	6
110	Structural Insight into the Critical Role of the N-Terminal Region in the Catalytic Activity of Dual-Specificity Phosphatase 26. PLoS ONE, 2016, 11, e0162115.	2.5	6
111	GADD45 \hat{l}^2 Regulates Hepatic Gluconeogenesis via Modulating the Protein Stability of FoxO1. Biomedicines, 2021, 9, 50.	3.2	5
112	Identification of the Regulators Binding to the Upstream Region of glxR in Corynebacterium glutamicum. Journal of Microbiology and Biotechnology, 2015, 25, 1216-1226.	2.1	5
113	Large-scale expression in Escherichia coli and efficient purification of precursor and active caspase-7 by introduction of thrombin cleavage sites. Protein Expression and Purification, 2010, 69, 29-33.	1.3	4
114	Identification of Novel Binding Partners for Caspase-6 Using a Proteomic Approach. Journal of Microbiology and Biotechnology, 2014, 24, 714-718.	2.1	4
115	High-resolution crystal structure of the PDZ1 domain of human protein tyrosine phosphatase PTP-Bas. Biochemical and Biophysical Research Communications, 2016, 478, 1205-1210.	2.1	3
116	Histone H3 is Digested by Granzyme A During Compromised Cell Death in the Raji Cells. Journal of Microbiology and Biotechnology, 2015, 25, 1578-1582.	2.1	3
117	Candidate target genes for the Saccharomyces cerevisiae transcription factor, Yap2. Folia Microbiologica, 2013, 58, 403-408.	2.3	2
118	Structural asymmetry of procaspase-7 bound to a specific inhibitor. Acta Crystallographica Section D: Biological Crystallography, 2013, 69, 1514-1521.	2.5	2
119	Monoclonal antibody K312-based depletion of pluripotent cells from differentiated stem cell progeny prevents teratoma formation. BMB Reports, 2022, 55, 142-147.	2.4	2
120	Depletion of Janus kinase-2 promotes neuronal differentiation of mouse embryonic stem cells. BMB Reports, 2021, 54, 626-631.	2.4	1
121	Expression of the Pro-Domain–Deleted Active Form of Caspase-6 in Escherichia coli. Journal of Microbiology and Biotechnology, 2014, 24, 719-723.	2.1	0
122	Monoclonal antibody K312-based depletion of pluripotent cells from differentiated stem cell progeny prevents teratoma formation. BMB Reports, 2021, , .	2.4	0
123	Depletion of Janus kinase-2 promotes neuronal differentiation of mouse embryonic stem cells. BMB Reports, 2021, , .	2.4	0