
Sankaran Sundaresan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5204473/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Plasma-assisted catalysis for ammonia synthesis in a dielectric barrier discharge reactor: key surface reaction steps and potential causes of low energy yield. Journal Physics D: Applied Physics, 2022, 55, 055202.	2.8	10
2	<i>In Situ</i> Identification of NNH and N ₂ H ₂ by Using Molecular-Beam Mass Spectrometry in Plasma-Assisted Catalysis for NH ₃ Synthesis. ACS Energy Letters, 2022, 7, 53-58.	17.4	25
3	The effect of gas on tribocharging of particles in a vibrated bed. Powder Technology, 2022, 401, 117272.	4.2	7
4	Development of data-driven filtered drag model for industrial-scale fluidized beds. Chemical Engineering Science, 2021, 230, 116235.	3.8	35
5	Mid-Infrared Scattering in Î ³ -Al2O3 Catalytic Powders. Applied Spectroscopy, 2021, 75, 706-717.	2.2	0
6	Particle-based coarse-grained approach for simulating dry powder inhaler. International Journal of Pharmaceutics, 2021, 606, 120821.	5.2	9
7	Effects of dose loading conditions and device geometry on the transport and aerosolization in dry powder inhalers: A simulation study. International Journal of Pharmaceutics, 2021, 610, 121219.	5.2	6
8	Effect of particle size on tribocharging. Powder Technology, 2020, 375, 199-209.	4.2	13
9	Coarse graining Euler-Lagrange simulations of cohesive particle fluidization. Powder Technology, 2020, 364, 167-182.	4.2	40
10	On modelling shear layers in dense granular flows. Journal of Fluid Mechanics, 2020, 892, .	3.4	3
11	<i>110th Anniversary</i> : Effect of System Size on Boundary-Driven Contact Charging in Particulate Flows. Industrial & Engineering Chemistry Research, 2019, 58, 17980-17990.	3.7	5
12	Neural-network-based filtered drag model for gas-particle flows. Powder Technology, 2019, 346, 403-413.	4.2	74
13	Computationally generated constitutive models for particle phase rheology in gas-fluidized suspensions. Journal of Fluid Mechanics, 2019, 860, 318-349.	3.4	32
14	Introducing a variable speed of sound in single-component lattice Boltzmann simulations of isothermal fluid flows. Computers and Fluids, 2018, 167, 129-145.	2.5	5
15	Toward Constitutive Models for Momentum, Species, and Energy Transport in Gas–Particle Flows. Annual Review of Chemical and Biomolecular Engineering, 2018, 9, 61-81.	6.8	125
16	Effects of Polarization on Particle-Laden Flows. Physical Review Letters, 2018, 121, 124503.	7.8	15
17	Experimental and numerical study of wall layer development in a tribocharged fluidized bed. Journal of Fluid Mechanics, 2018, 849, 860-884.	3.4	40
18	Eulerian modelling of gas–solid flows with triboelectric charging. Journal of Fluid Mechanics, 2018, 848, 340-369.	3.4	25

SANKARAN SUNDARESAN

#	Article	IF	CITATIONS
19	Multiple timescale contact charging. Physical Review Materials, 2018, 2, .	2.4	5
20	Growth and breakup of a wet agglomerate in a dry gas–solid fluidized bed. AICHE Journal, 2017, 63, 2520-2527.	3.6	29
21	Analysis of the effect of small amounts of liquid on gas–solid fluidization using CFDâ€ĐEM simulations. AICHE Journal, 2017, 63, 5290-5302.	3.6	31
22	Forward osmosis using draw solutions manifesting liquid-liquid phase separation. Desalination, 2017, 421, 23-31.	8.2	16
23	Effective particle diameters for simulating fluidization of nonâ€spherical particles: CFDâ€ĐEM models vs. MRI measurements. AICHE Journal, 2017, 63, 2555-2568.	3.6	19
24	A tribute to professor Roy Jackson: Intellectual leader, scholar, mentor. AICHE Journal, 2017, 63, 5239-5249.	3.6	0
25	Effect of humidity on triboelectric charging in a vertically vibrated granular bed: Experiments and modeling. Chemical Engineering Science, 2017, 173, 363-373.	3.8	37
26	Dynamics of Tissue-Induced Alignment of Fibrous Extracellular Matrix. Biophysical Journal, 2017, 113, 702-713.	0.5	57
27	A Tribute to Roy Jackson. AICHE Journal, 2017, 63, 5238-5238.	3.6	0
28	Lattice Boltzmann simulations of low-Reynolds-number flows past fluidized spheres: effect of inhomogeneities on the dragÂforce. Journal of Fluid Mechanics, 2017, 833, 599-630.	3.4	48
29	Towards filtered drag force model for non-cohesive and cohesive particle-gas flows. Physics of Fluids, 2017, 29, .	4.0	67
30	Triboelectric charging of monodisperse particles in fluidized beds. AICHE Journal, 2017, 63, 1872-1891.	3.6	37
31	Numerical studies of the effects of fines on fluidization. AICHE Journal, 2016, 62, 2271-2281.	3.6	23
32	Lattice Boltzmann simulations of low-Reynolds-number flow past fluidized spheres: effect of Stokes number on drag force. Journal of Fluid Mechanics, 2016, 788, 576-601.	3.4	86
33	Sub-grid models for heat transfer in gas-particle flows with immersed horizontal cylinders. Chemical Engineering Science, 2016, 151, 7-15.	3.8	19
34	Rheology of granular materials with size distributions across dense-flow regimes. Powder Technology, 2016, 295, 322-329.	4.2	23
35	Filtered sub-grid constitutive models for fluidized gas-particle flows constructed from 3-D simulations. Chemical Engineering Science, 2016, 152, 443-456.	3.8	114
36	Intrusion of a Liquid Droplet into a Powder under Gravity. Langmuir, 2016, 32, 8631-8640.	3.5	13

Sankaran Sundaresan

#	Article	IF	CITATIONS
37	Fluid and particle coarsening of drag force for discrete-parcel approach. Chemical Engineering Science, 2016, 155, 258-267.	3.8	77
38	A hybrid approach to computing electrostatic forces in fluidized beds of charged particles. AICHE Journal, 2016, 62, 2282-2295.	3.6	44
39	Formation of cyclopentane methane binary clathrate hydrate in brine solutions. Chemical Engineering Science, 2016, 141, 125-132.	3.8	61
40	Simulating wet gas–solid fluidized beds using coarse-grid CFD-DEM. Chemical Engineering Science, 2016, 144, 224-238.	3.8	59
41	A modified cohesion model for CFD–DEM simulations of fluidization. Powder Technology, 2016, 296, 17-28.	4.2	82
42	Validation of filtered two-fluid models for gas–particle flows against experimental data from bubbling fluidized bed. Powder Technology, 2015, 284, 159-169.	4.2	39
43	Sub-Grid Filtering Model for Multiphase Heat Transfer With Immersed Tubes. , 2014, , .		1
44	A drag model for filtered Euler–Lagrange simulations of clustered gas–particle suspensions. Chemical Engineering Science, 2014, 117, 416-425.	3.8	160
45	Rheology of cohesive granular materials across multiple dense-flow regimes. Physical Review E, 2014, 90, 032206.	2.1	41
46	Verification of sub-grid filtered drag models for gas-particle fluidized beds with immersed cylinder arrays. Chemical Engineering Science, 2014, 114, 144-154.	3.8	32
47	Formation kinetics of cyclopentane–methane binary clathrate hydrate. Chemical Engineering Science, 2014, 119, 147-157.	3.8	37
48	Carbon Capture Simulation Initiative: A Case Study in Multiscale Modeling and New Challenges. Annual Review of Chemical and Biomolecular Engineering, 2014, 5, 301-323.	6.8	66
49	Filtered models for bidisperse gas–particle flows. Chemical Engineering Science, 2014, 108, 67-86.	3.8	30
50	Radial hopper flow prediction using a constitutive model with microstructure evolution. Powder Technology, 2013, 242, 81-85.	4.2	14
51	Periodic flow structures in vertical gas-particle flows. Powder Technology, 2013, 241, 174-180.	4.2	1
52	Filtered twoâ€fluid models of fluidized gasâ€particle flows: New constitutive relations. AICHE Journal, 2013, 59, 3265-3275.	3.6	174
53	Lattice-Boltzmann-based two-phase thermal model for simulating phase change. Physical Review E, 2013, 88, 033302.	2.1	27
54	Filtered models for scalar transport in gas–particle flows. Chemical Engineering Science, 2013, 95, 291-300.	3.8	65

#	Article	IF	CITATIONS
55	Role of hydrodynamics on chemical reactor performance. Current Opinion in Chemical Engineering, 2013, 2, 325-330.	7.8	16
56	Sub-grid drag models for horizontal cylinder arrays immersed in gas-particle multiphase flows. Chemical Engineering Science, 2013, 104, 399-412.	3.8	25
57	Dynamics of Single Rising Bubbles in Neutrally Buoyant Liquid-Solid Suspensions. Physical Review Letters, 2013, 110, 244501.	7.8	23
58	A modified kinetic theory for frictional granular flows in dense and dilute regimes. Physics of Fluids, 2013, 25, .	4.0	100
59	Bridging the rheology of granular flows in three regimes. Physical Review E, 2012, 85, 021305.	2.1	215
60	Effect of microstructural anisotropy on the fluid–particle drag force and the stability of the uniformly fluidized state. Journal of Fluid Mechanics, 2012, 713, 27-49.	3.4	12
61	Filtered models for reacting gas–particle flows. Chemical Engineering Science, 2012, 82, 132-143.	3.8	62
62	Validation Studies on Filtered Model Equations for Gas-Particle Flows in Risers. Industrial & Engineering Chemistry Research, 2012, 51, 2094-2103.	3.7	84
63	Experimental and computational studies of dense granular flow: Transition from quasi-static to intermediate regime in a Couette shear device. Powder Technology, 2012, 220, 7-14.	4.2	15
64	Do we need sub-grid scale corrections for both continuum and discrete gas-particle flow models?. Powder Technology, 2012, 220, 2-6.	4.2	74
65	Professor M. S. Ananth: Leading Researcher, Gifted Teacher, and Visionary Leader of Higher Education in India. Industrial & Engineering Chemistry Research, 2011, 50, 12845-12846.	3.7	1
66	Constitutive Models for Filtered Two-Fluid Models of Fluidized Gas–Particle Flows. Industrial & Engineering Chemistry Research, 2011, 50, 13190-13201.	3.7	144
67	A lattice Boltzmann study on the drag force in bubble swarms. Journal of Fluid Mechanics, 2011, 679, 101-121.	3.4	16
68	A constitutive model with microstructure evolution for flow of rate-independent granular materials. Journal of Fluid Mechanics, 2011, 682, 590-616.	3.4	141
69	Meso-scale structures of bidisperse mixtures of particles fluidized by a gas. Chemical Engineering Science, 2011, 66, 4403-4420.	3.8	24
70	Nanoparticle mixing through rapid expansion of high pressure and supercritical suspensions. Journal of Nanoparticle Research, 2011, 13, 4253-4266.	1.9	20
71	Efficiency of hydrogen recovery from reformate with a polymer electrolyte hydrogen pump. AICHE Journal, 2011, 57, 1767-1779.	3.6	41
72	Verification of filtered twoâ€fluid models for gasâ€particle flows in risers. AICHE Journal, 2011, 57, 2691-2707.	3.6	106

#	Article	IF	CITATIONS
73	Contact line motion without slip in lattice Boltzmann simulations. Chemical Engineering Science, 2011, 66, 3452-3458.	3.8	11
74	Environmentally benign dry mechanical mixing of nano-particles using magnetically assisted impaction mixing process. Powder Technology, 2011, 209, 138-146.	4.2	12
75	Fluidâ€particle drag in inertial polydisperse gas–solid suspensions. AICHE Journal, 2010, 56, 1995-2004.	3.6	28
76	Transmission of stresses in static and sheared granular beds: The influence of particle size, shearing rate, layer thickness and sensor size. Powder Technology, 2010, 203, 23-32.	4.2	10
77	A plasticity model with microstructure evolution for quasi-static granular flows. AIP Conference Proceedings, 2010, , .	0.4	4
78	Permeability in Fixed Beds of Spheres with Size Distributions and Stochastically Generated Porous Media Analogs. , 2010, , .		2
79	Unsteady Shear of Dense Assemblies of Cohesive Granular Materials under Constant Volume Conditions. Industrial & Engineering Chemistry Research, 2010, 49, 5153-5165.	3.7	6
80	Preface: 21st International Symposium on Chemical Reaction Engineering (ISCRE 21). Industrial & Engineering Chemistry Research, 2010, 49, 10153-10153.	3.7	2
81	Fluidâ€particle drag in lowâ€Reynoldsâ€number polydisperse gas–solid suspensions. AICHE Journal, 2009, 55, 1352-1368.	3.6	108
82	Deagglomeration of nanoparticle aggregates via rapid expansion of supercritical or highâ€pressure suspensions. AICHE Journal, 2009, 55, 2807-2826.	3.6	53
83	Drag Law for Bidisperse Gasâ^'Solid Suspensions Containing Equally Sized Spheres. Industrial & Engineering Chemistry Research, 2009, 48, 227-241.	3.7	59
84	Twoâ€way coupled largeâ€eddy simulations of the gasâ€solid flow in cyclone separators. AICHE Journal, 2008, 54, 872-885.	3.6	96
85	Filtered twoâ€fluid models for fluidized gasâ€particle suspensions. AICHE Journal, 2008, 54, 1431-1448.	3.6	379
86	Shear flow of assemblies of cohesive granular materials under constant applied normal stress. Powder Technology, 2008, 183, 340-355.	4.2	9
87	Lattice Boltzmann Simulation of Two-Fluid Model Equations. Industrial & Engineering Chemistry Research, 2008, 47, 9165-9173.	3.7	18
88	Multifunctional Catalyst for Fischer-Tropsch Synthesis. ACS Symposium Series, 2007, , 75-85.	0.5	0
89	ExSact: Novel Solid-Acid Catalyzed Iso-Paraffin Alkylation Process. ACS Symposium Series, 2007, , 181-193.	0.5	0
90	Direct numerical simulations of dense suspensions: wave instabilities in liquid-fluidized beds. Journal of Fluid Mechanics, 2007, 587, 303-336.	3.4	99

Sankaran Sundaresan

#	Article	IF	CITATIONS
91	Particle Simulation of Vibrated Gas-Fluidized Beds of Cohesive Fine Powders. Industrial & Engineering Chemistry Research, 2006, 45, 6966-6977.	3.7	18
92	Analysis of unsteady forces in ordered arrays of monodisperse spheres. Journal of Fluid Mechanics, 2006, 552, 257.	3.4	15
93	Simulation of mass-loading effects in gas–solid cyclone separators. Powder Technology, 2006, 163, 59-68.	4.2	115
94	Shear flow of assemblies of cohesive and non-cohesive granular materials. Powder Technology, 2006, 169, 10-21.	4.2	41
95	SIMULATION OF BUBBLE BREAKUP DYNAMICS IN HOMOGENEOUS TURBULENCE. Chemical Engineering Communications, 2006, 193, 1038-1063.	2.6	57
96	Coarse-Grid Simulation of Gas-Particle Flows in Vertical Risers. Industrial & Engineering Chemistry Research, 2005, 44, 6022-6037.	3.7	225
97	Silo music and silo quake: granular flow-induced vibration. Powder Technology, 2004, 145, 190-202.	4.2	56
98	Coarse bifurcation studies of bubble flow lattice Boltzmann simulations. Chemical Engineering Science, 2004, 59, 2357-2362.	3.8	28
99	Aerated vibrofluidization of silica nanoparticles. AICHE Journal, 2004, 50, 1776-1785.	3.6	179
100	Analysis of a frictional–kinetic model for gas–particle flow. Powder Technology, 2003, 129, 72-85.	4.2	330
101	Electrical capacitance tomography measurements on vertical and inclined pneumatic conveying of granular solids. Chemical Engineering Science, 2003, 58, 4225-4245.	3.8	95
102	A comparative study of lattice Boltzmann and front-tracking finite-difference methods for bubble simulations. International Journal of Multiphase Flow, 2003, 29, 109-116.	3.4	58
103	Workshop Findings. International Journal of Multiphase Flow, 2003, 29, 1047-1059.	3.4	14
104	Appendix 2: Report of study group on disperse flow. International Journal of Multiphase Flow, 2003, 29, 1069-1087.	3.4	19
105	INSTABILITIES IN FLUIDIZED BEDS. Annual Review of Fluid Mechanics, 2003, 35, 63-88.	25.0	154
106	The Effect of Static Electrification on Gasâ^'Solid Flows in Vertical Risers. Industrial & Engineering Chemistry Research, 2002, 41, 6224-6234.	3.7	56
107	Analysis of drag and virtual mass forces in bubbly suspensions using an implicit formulation of the lattice Boltzmann method. Journal of Fluid Mechanics, 2002, 452, 61-96.	3.4	171
108	Role of wall friction in fluidization and standpipe flow. Powder Technology, 2002, 124, 45-54.	4.2	42

SANKARAN SUNDARESAN

#	Article	IF	CITATIONS
109	Lift force in bubbly suspensions. Chemical Engineering Science, 2002, 57, 3521-3542.	3.8	75
110	The role of contact stresses and wall friction on fluidization. Chemical Engineering Science, 2002, 57, 5123-5141.	3.8	66
111	The role of meso-scale structures in rapid gas–solid flows. Journal of Fluid Mechanics, 2001, 445, 151-185.	3.4	629
112	Electrical Capacitance Tomography Measurements on the Pneumatic Conveying of Solids. Industrial & Engineering Chemistry Research, 2001, 40, 4216-4226.	3.7	58
113	James Wei. Industrial & Engineering Chemistry Research, 2001, 40, 4155-4156.	3.7	Ο
114	Some outstanding questions in handling of cohesionless particles. Powder Technology, 2001, 115, 2-7.	4.2	46
115	Modeling the hydrodynamics of multiphase flow reactors: Current status and challenges. AICHE Journal, 2000, 46, 1102-1105.	3.6	198
116	Bubble flow simulations with the lattice Boltzmann method. Chemical Engineering Science, 1999, 54, 4817-4823.	3.8	58
117	Title is missing!. Catalysis Letters, 1999, 62, 87-91.	2.6	16
118	Roy Jackson. Industrial & amp; Engineering Chemistry Research, 1999, 38, 575-575.	3.7	1
119	The effect of boundaries on the plane Couette flow of granular materials: a bifurcation analysis. Journal of Fluid Mechanics, 1999, 397, 203-229.	3.4	42
120	Gas-particle flow in vertical pipes with high mass loading of particles. Powder Technology, 1998, 96, 6-23.	4.2	36
121	Dynamics of gas-particle flow in circulating fluidized beds. Powder Technology, 1998, 100, 173-182.	4.2	40
122	From Bubbles to Clusters in Fluidized Beds. Physical Review Letters, 1998, 81, 1849-1852.	7.8	76
123	The growth, saturation, and scaling behaviour of one- and two-dimensional disturbances in fluidized beds. Journal of Fluid Mechanics, 1998, 362, 83-119.	3.4	13
124	Fully developed travelling wave solutions and bubble formation in fluidized beds. Journal of Fluid Mechanics, 1997, 334, 157-188.	3.4	60
125	Instabilities of fully developed rapid flow of a granular material in a channel. Journal of Fluid Mechanics, 1997, 342, 179-197.	3.4	31
126	Developing Flow of Gas-Particle Mixtures in Vertical Ducts. Industrial & Engineering Chemistry Research, 1997, 36, 3375-3390.	3.7	8

#	Article	IF	CITATIONS
127	Rebuttal to the Comments of Lyle F. Albright on "Kinetic Analysis of Isobutane/Butene Alkylations over Ultrastable Hâ^Y Zeoliteâ€: Industrial & Engineering Chemistry Research, 1997, 36, 2517-2520.	3.7	2
128	Metastability of Spinel-type Solid Solutions in the SiO2â^'Al2O3System. Chemistry of Materials, 1997, 9, 3096-3100.	6.7	23
129	New precursors to vanadium phosphorus oxide catalysts. Catalysis Today, 1997, 33, 49-56.	4.4	35
130	Fundamental Studies of Butane Oxidation over Model-Supported Vanadium Oxide Catalysts: Molecular Structure-Reactivity Relationships. Journal of Catalysis, 1997, 170, 75-88.	6.2	132
131	Stability of bounded rapid shear flows of a granular material. Journal of Fluid Mechanics, 1996, 308, 31-62.	3.4	55
132	One- and two-dimensional travelling wave solutions in gas-fluidized beds. Journal of Fluid Mechanics, 1996, 306, 183-221.	3.4	71
133	Kinetics of Zeolitic Solid Acid-Catalyzed Alkylation of Isobutane with 2-Butene. ACS Symposium Series, 1996, , 105-115.	0.5	6
134	Kinetic Analysis of Isobutane/Butene Alkylation over Ultrastable Hâ^'Y Zeolite. Industrial & Engineering Chemistry Research, 1996, 35, 3861-3873.	3.7	86
135	The oxidation of C4 molecules on vanadyl pyrophosphate catalysts. Studies in Surface Science and Catalysis, 1996, 101, 991-1000.	1.5	9
136	The effect of the phase composition of model VPO catalysts for partial oxidation of n-butane. Catalysis Today, 1996, 28, 275-295.	4.4	169
137	A two-phase release model for quantifying risk reduction for modified HF alkylation catalysts. Journal of Hazardous Materials, 1995, 44, 141-183.	12.4	6
138	New Layered Vanadyl(IV) Phosphite as a Precursor to Vanadyl Pyrophosphate Catalysts for Partial Oxidation of n-Butane to Maleic Anhydride. Journal of Catalysis, 1995, 156, 298-300.	6.2	9
139	Evolution of the active surface of the vanadyl pyrophosphate catalysts. Catalysis Letters, 1995, 32, 379-386.	2.6	84
140	Synthesis and Characterization of Vanadyl Phosphite, VIVOHPIIIO3.cntdot.1.5H2O. Chemistry of Materials, 1995, 7, 1485-1492.	6.7	26
141	Vanadyl(IV) Phosphonates, VOCnH2n+1PO3.cntdot.xH2O (n = 0-4, x = 1 or 1.5), as Precursors of Vanadyl(IV) Pyrophosphate, (VO)2P2O7. Chemistry of Materials, 1995, 7, 1493-1498.	6.7	29
142	Instabilities and the formation of bubbles in fluidized beds. Journal of Fluid Mechanics, 1995, 303, 327-366.	3.4	124
143	Multiphase Flow and Fluidization. By D. GIDASPOW. Academic Press, 1994. 467 pp. ISBN 0-12-282470-9 Journal of Fluid Mechanics, 1995, 287, 405-407.	3.4	0
144	Turbulent gas-particle flow in vertical risers. AICHE Journal, 1994, 40, 215-228.	3.6	127

#	Article	IF	CITATIONS
145	Liquid Distribution in Trickle Bed Reactors. Energy & Fuels, 1994, 8, 531-535.	5.1	10
146	Structural Investigation and Energetics of Mullite Formation from Sol-Gel Precursors. Chemistry of Materials, 1994, 6, 160-170.	6.7	103
147	Intercalation of Aliphatic Amines into the Layered Structure of Vanadyl(IV) Hydrogen Phosphate Hemihydrate (VOHPO4.cntdot.0.5H2O). Chemistry of Materials, 1994, 6, 353-356.	6.7	28
148	Developing flow of a gas-particle mixture in a vertical riser. AICHE Journal, 1993, 39, 541-552.	3.6	75
149	Gas-Particle flow in a duct of arbitrary inclination with particle-particle interactions. AICHE Journal, 1993, 39, 1261-1271.	3.6	98
150	Infinite-wavelength analysis for two-phase flow: A three-parameter computer-assisted study of global bifurcations. Physica D: Nonlinear Phenomena, 1992, 55, 197-220.	2.8	2
151	Time-dependent vertical gas—liquid flow in packed beds. Chemical Engineering Science, 1992, 47, 337-346.	3.8	11
152	Stability of periodic travelling waves in trickle beds. Chemical Engineering Science, 1992, 47, 3257-3264.	3.8	3
153	Mullitization of Diphasic Aluminosilicate Gels. Journal of the American Ceramic Society, 1991, 74, 2388-2392.	3.8	123
154	Gas-solid flow in vertical tubes. AICHE Journal, 1991, 37, 1009-1018.	3.6	123
155	Effect of boundaries on trickle-bed hydrodynamics. AICHE Journal, 1991, 37, 1237-1241.	3.6	17
156	Sintering with Rigid Inclusions: Pair Interactions. Journal of the American Ceramic Society, 1990, 73, 54-60.	3.8	31
157	Dynamics of pulsing flow in trickle beds. AICHE Journal, 1990, 36, 605-621.	3.6	93
158	Time dependent hydrodynamics in multiphase reactors. Chemical Engineering Science, 1990, 45, 2239-2246.	3.8	6
159	Dynamics of packed-bed reactors loaded with oxide catalysts. AICHE Journal, 1989, 35, 746-754.	3.6	15
160	A macroscopic model for countercurrent gas-liquid flow in packed columns. AICHE Journal, 1989, 35, 1282-1292.	3.6	20
161	Oxygen transfer between rhodium and an oxygen-ion conducting support. AICHE Journal, 1988, 34, 1048-1050.	3.6	5
162	Disproportionation of toluene over ZSM–5 under near-critical conditions. AICHE Journal, 1988, 34, 1211-1214.	3.6	47

#	Article	IF	CITATIONS
163	Onset of pulsing in two-phase cocurrent downflow through a packed bed. AICHE Journal, 1988, 34, 1850-1860.	3.6	141
164	Effect of water vapor on the activity and selectivity characteristics of a vanadium phosphate catalyst towards butane oxidation. Applied Catalysis, 1988, 41, 225-239.	0.8	46
165	OPTIMAL DISTRIBUTION OF MULTIFUNCTIONAL CATALYSTS IN A PACKED BED REACTOR. Chemical Engineering Communications, 1986, 40, 25-39.	2.6	5
166	NON-RANDOM DISTRIBUTION OF ADSORBATES ON CATALYTIC SURFACES: THE ROLE OF ADSORBATE MOBILITIES ON REACTION RATES. Chemical Engineering Communications, 1985, 35, 1-22.	2.6	16
167	NON-RANDOM DISTRIBUTION OF ADSORBATES ON CATALYTIC SURFACES: THE ROLE OF INTERACTIONS BETWEEN ADSORBATES. Chemical Engineering Communications, 1985, 32, 333-355.	2.6	11