List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5204272/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Adsorption of Organic Compounds by Carbon Nanomaterials in Aqueous Phase: Polanyi Theory and Its Application. Chemical Reviews, 2010, 110, 5989-6008.	47.7	741
2	Adsorption of Polycyclic Aromatic Hydrocarbons by Carbon Nanomaterials. Environmental Science & Technology, 2006, 40, 1855-1861.	10.0	699
3	Aqueous Adsorption of Aniline, Phenol, and their Substitutes by Multi-Walled Carbon Nanotubes. Environmental Science & Technology, 2008, 42, 7931-7936.	10.0	371
4	Interactions of Humic Acid with Nanosized Inorganic Oxides. Langmuir, 2009, 25, 3571-3576.	3.5	363
5	Desorption of polycyclic aromatic hydrocarbons from carbon nanomaterials in water. Environmental Pollution, 2007, 145, 529-537.	7.5	293
6	Competitive Sorption of Pyrene, Phenanthrene, and Naphthalene on Multiwalled Carbon Nanotubes. Environmental Science & Technology, 2006, 40, 5804-5810.	10.0	275
7	Adsorption of volatile organic compounds by metal–organic frameworks MIL-101: Influence of molecular size and shape. Journal of Hazardous Materials, 2011, 195, 124-131.	12.4	260
8	Adsorption of fulvic acid by carbon nanotubes from water. Environmental Pollution, 2009, 157, 1095-1100.	7.5	245
9	Adsorption behaviors of volatile organic compounds (VOCs) on porous clay heterostructures (PCH). Journal of Hazardous Materials, 2009, 170, 7-12.	12.4	164
10	Enhanced Soil Washing of Phenanthrene by Mixed Solutions of TX100 and SDBS. Environmental Science & Technology, 2006, 40, 4274-4280.	10.0	162
11	The effect of ionic strength and pH on the stability of tannic acid-facilitated carbon nanotube suspensions. Carbon, 2009, 47, 2875-2882.	10.3	157
12	Heteroagglomeration of Oxide Nanoparticles with Algal Cells: Effects of Particle Type, Ionic Strength and pH. Environmental Science & Technology, 2015, 49, 932-939.	10.0	127
13	Sorption of Phenanthrene by Humic Acid-Coated Nanosized TiO ₂ and ZnO. Environmental Science & Technology, 2009, 43, 1845-1851.	10.0	122
14	Interaction between Oxide Nanoparticles and Biomolecules of the Bacterial Cell Envelope As Examined by Infrared Spectroscopy. Langmuir, 2010, 26, 18071-18077.	3.5	122
15	Influence of Surface Oxidation of Multiwalled Carbon Nanotubes on the Adsorption Affinity and Capacity of Polar and Nonpolar Organic Compounds in Aqueous Phase. Environmental Science & Technology, 2012, 46, 5446-5454.	10.0	112
16	Adsorption of volatile organic compounds by metal-organic frameworks MOF-177. Journal of Environmental Chemical Engineering, 2013, 1, 713-718.	6.7	108
17	Correlations and adsorption mechanisms of aromatic compounds on a high heat temperature treated bamboo biochar. Environmental Pollution, 2016, 210, 57-64.	7.5	108
18	Competitive Adsorption of Naphthalene with 2,4-Dichlorophenol and 4-Chloroaniline on Multiwalled Carbon Nanotubes. Environmental Science & Amp; Technology, 2010, 44, 3021-3027.	10.0	97

#	Article	IF	CITATIONS
19	Correlations and adsorption mechanisms of aromatic compounds on biochars produced from various biomass at 700°C. Environmental Pollution, 2018, 233, 64-70.	7.5	87
20	Sonication-assisted dispersion of carbon nanotubes in aqueous solutions of the anionic surfactant SDBS: The role of sonication energy. Science Bulletin, 2013, 58, 2082-2090.	1.7	85
21	Sorption of sodium dodecylbenzene sulfonate by montmorillonite. Environmental Pollution, 2007, 145, 571-576.	7.5	75
22	Adsorption and correlations of selected aromatic compounds on a KOH-activated carbon with large surface area. Science of the Total Environment, 2018, 618, 1677-1684.	8.0	75
23	Different stabilities of multiwalled carbon nanotubes in fresh surface water samples. Environmental Pollution, 2010, 158, 1270-1274.	7.5	73
24	The role of exopolymeric substances in the bioaccumulation and toxicity of Ag nanoparticles to algae. Scientific Reports, 2016, 6, 32998.	3.3	71
25	Effect of natural and synthetic surface coatings on the toxicity of multiwalled carbon nanotubes toward green algae. Carbon, 2015, 83, 198-207.	10.3	70
26	Adsorption and Conformation of a Cationic Surfactant on Single-Walled Carbon Nanotubes and Their Influence on Naphthalene Sorption. Environmental Science & Technology, 2010, 44, 681-687.	10.0	65
27	A multi-component statistic analysis for the influence of sediment/soil composition on the sorption of a nonionic surfactant (Triton X-100) onto natural sediments/soils. Water Research, 2003, 37, 4792-4800.	11.3	59
28	The relationship between humic acid (HA) adsorption on and stabilizing multiwalled carbon nanotubes (MWNTs) in water: Effects of HA, MWNT and solution properties. Journal of Hazardous Materials, 2012, 241-242, 404-410.	12.4	54
29	Sorption of Cu2+ on humic acids sequentially extracted from a sediment. Chemosphere, 2015, 138, 657-663.	8.2	54
30	Transport of surfactant-facilitated multiwalled carbon nanotube suspensions in columns packed with sized soil particles. Environmental Pollution, 2014, 192, 36-43.	7.5	51
31	Adsorption of bovine serum albumin on nano and bulk oxide particles in deionized water. Colloids and Surfaces B: Biointerfaces, 2012, 94, 341-346.	5.0	50
32	Correlation and prediction of adsorption capacity and affinity of aromatic compounds on carbon nanotubes. Water Research, 2016, 88, 492-501.	11.3	50
33	Physicochemical transformation and algal toxicity of engineered nanoparticles in surface water samples. Environmental Pollution, 2016, 211, 132-140.	7.5	47
34	Effects of charge and surface defects of multi-walled carbon nanotubes on the disruption of model cell membranes. Science of the Total Environment, 2017, 574, 771-780.	8.0	46
35	The effects of surfactants and solution chemistry on the transport of multiwalled carbon nanotubes in quartz sand-packed columns. Environmental Pollution, 2013, 182, 269-277.	7.5	45
36	Intrinsic defects enhanced biochar/peroxydisulfate oxidation capacity through electron-transfer regime. Chemical Engineering Journal, 2022, 438, 135606.	12.7	43

#	Article	IF	CITATIONS
37	A durable superhydrophobic porous polymer coated sponge for efficient separation of immiscible oil/water mixtures and oil-in-water emulsions. Journal of Hazardous Materials, 2022, 425, 127980.	12.4	41
38	Correlations of nonlinear sorption of organic solutes with soil/sediment physicochemical properties. Chemosphere, 2005, 61, 116-128.	8.2	37
39	Concentration-dependent polyparameter linear free energy relationships to predict organic compound sorption on carbon nanotubes. Scientific Reports, 2014, 4, 3888.	3.3	37
40	Sorption of phenanthrene by nanosized alumina coated with sequentially extracted humic acids. Environmental Science and Pollution Research, 2010, 17, 410-419.	5.3	35
41	Minimizing losses of nonionic and anionic surfactants to a montmorillonite saturated with calcium using their mixtures. Journal of Colloid and Interface Science, 2005, 291, 59-66.	9.4	34
42	Coagulation removal of humic acid-stabilized carbon nanotubes from water by PACI: Influences of hydraulic condition and water chemistry. Science of the Total Environment, 2012, 439, 123-128.	8.0	34
43	Enhanced sorption of naphthalene and p-nitrophenol by Nano-SiO2 modified with a cationic surfactant. Water Research, 2013, 47, 4006-4012.	11.3	34
44	Octanol-water partition coefficient (logKow) dependent movement and time lagging of polycyclic aromatic hydrocarbons (PAHs) from emission sources to lake sediments: A case study of Taihu Lake, China. Environmental Pollution, 2021, 288, 117709.	7.5	33
45	A superhydrophobic and porous polymer adsorbent with large surface area. Journal of Materials Chemistry A, 2021, 9, 254-258.	10.3	27
46	Dispersant selection for nanomaterials: Insight into dispersing functionalized carbon nanotubes by small polar aromatic organic molecules. Carbon, 2015, 91, 494-505.	10.3	26
47	The effect of water chemistry on homoaggregations of various nanoparticles: Specific role of Cl â^' ions. Journal of Colloid and Interface Science, 2015, 450, 272-278.	9.4	26
48	Role of molecular size of volatile organic compounds on their adsorption by KOH-activated micro-mesoporous carbon. Journal of Hazardous Materials, 2022, 424, 127355.	12.4	25
49	Influence of pH and surface oxygen-containing groups on multiwalled carbon nanotubes on the transformation and adsorption of 1-naphthol. Journal of Colloid and Interface Science, 2012, 374, 226-231.	9.4	24
50	Synergistic remediation of PCB-contaminated soil with nanoparticulate zero-valent iron and alfalfa: targeted changes in the root metabolite-dependent microbial community. Environmental Science: Nano, 2021, 8, 986-999.	4.3	23
51	Addition of biochar as thin preamble layer into sand filtration columns could improve the microplastics removal from water. Water Research, 2022, 221, 118783.	11.3	23
52	Nanoparticulate zero valent iron interaction with dissolved organic matter impacts iron transformation and organic carbon stability. Environmental Science: Nano, 2020, 7, 1818-1830.	4.3	22
53	Fe-based nanomaterial transformation to amorphous Fe: Enhanced alfalfa rhizoremediation of PCBs-contaminated soil. Journal of Hazardous Materials, 2022, 425, 127973.	12.4	22
54	Influence of Functional Groups on Desorption of Organic Compounds from Carbon Nanotubes into Water: Insight into Desorption Hysteresis. Environmental Science & Technology, 2013, 47, 130726083137003.	10.0	21

#	Article	IF	CITATIONS
55	Prediction of the sorption capacities and affinities of organic chemicals by XAD-7. Environmental Science and Pollution Research, 2016, 23, 1060-1070.	5.3	19
56	The role of humic acid in stabilizing fullerene (C60) suspensions. Journal of Zhejiang University: Science A, 2014, 15, 634-642.	2.4	16
57	Adsorption of Organic Compounds by Biomass Chars: Direct Role of Aromatic Condensation (Ring) Tj ETQq1 1 0.7 Technology, 2021, 55, 1594-1603.	784314 rg 10.0	BT /Overloc 16
58	Time-dependent desorption of anilines, phenols, and nitrobenzenes from biochar produced at 700°C: Insight into desorption hysteresis. Chemical Engineering Journal, 2021, 422, 130584.	12.7	16
59	Are engineered nanomaterials superior adsorbents for removal and pre-concentration of heavy metal cations from water?. RSC Advances, 2014, 4, 46122-46125.	3.6	15
60	Dispersion and aggregation of single-walled carbon nanotubes in aqueous solutions of anionic surfactants. Journal of Zhejiang University: Science A, 2014, 15, 624-633.	2.4	14
61	Sorption kinetics of 1,3,5-trinitrobenzene to biochars produced at various temperatures. Biochar, 2022, 4, .	12.6	14
62	The effect of oxidation on physicochemical properties and aqueous stabilization of multiwalled carbon nanotubes: comparison of multiple analysis methods. Science China Chemistry, 2016, 59, 1498-1507.	8.2	13
63	Correlations and nonlinear partition of nonionic organic compounds by humus-like substances humificated from rice straw. Scientific Reports, 2019, 9, 15131.	3.3	12
64	Selective removal of phenanthrene from SDBS or TX100 solution by sorption of resin SP850. Chemical Engineering Journal, 2020, 388, 124191.	12.7	12
65	Environmental behavior and toxicity of engineered nanomaterials. Chinese Science Bulletin, 2009, 54, 3590-3604.	0.7	12
66	Current and Future Trends of Low and High Molecular Weight Polycyclic Aromatic Hydrocarbons in Surface Water and Sediments of China: Insights from Their Long-Term Relationships between Concentrations and Emissions. Environmental Science & Technology, 2022, 56, 3397-3406.	10.0	12
67	Enhanced soil retention for o-nitroaniline by the addition of a mixture of a cationic surfactant (Cetyl) Tj ETQq1 1 0 Journal of Hazardous Materials, 2010, 182, 757-762.	.784314 r 12.4	gBT /Overlo 11
68	Reciprocal interference of clay minerals and nanoparticulate zero-valent iron on their interfacial interaction with dissolved organic matter. Science of the Total Environment, 2020, 739, 140372.	8.0	10
69	Microbial degradation of nondesorbable organic compounds on biochars by extracellular reactive oxygen species. Journal of Hazardous Materials, 2022, 439, 129625.	12.4	10
70	Linear and nonlinear partition of nonionic organic compounds into resin ADS-21 from water. Environmental Pollution, 2019, 247, 277-284.	7.5	9
71	Correlations and prediction of adsorption capacity and affinity of aromatic compounds on activated carbons. Science of the Total Environment, 2020, 704, 135457.	8.0	9
72	Nonlinear sorption of phenols and anilines by organobentonites: Nonlinear partition and space limitation for partitioning. Science of the Total Environment, 2020, 736, 139609.	8.0	9

#	Article	IF	CITATIONS
73	Improved removal performance of Gram-negative and Gram-positive bacteria in sand filtration system with arginine modified biochar amendment. Water Research, 2022, 211, 118006.	11.3	9
74	Adsorption of fulvic acid on mesopore-rich activated carbon with high surface area. Science of the Total Environment, 2022, 838, 155918.	8.0	9
75	Sorption of organic compounds by pyrolyzed humic acids. Science of the Total Environment, 2021, 781, 146646.	8.0	8
76	Re-recognizing micro locations of nanoscale zero-valent iron in biochar using C-TEM technique. Scientific Reports, 2021, 11, 5037.	3.3	7
77	Sorption mechanism of naphthalene by diesel soot: Insight from displacement with phenanthrene/p-nitrophenol. Journal of Environmental Sciences, 2021, 106, 136-146.	6.1	5
78	Significance of natural organic matter in nonlinear sorption of 2,4-dichlorophenol onto soils/sediments. Water Resources Research, 2004, 40, .	4.2	3
79	Environmental risks of engineered nanomaterials. Journal of Zhejiang University: Science A, 2014, 15, 547-551.	2.4	3
80	Nonlinear partition of nonionic organic compounds into humus-like substance humificated from lignin. Science of the Total Environment, 2021, 764, 142887.	8.0	3
81	Adsorption of soil organic matter by gel-like ferrihydrite and dense ferrihydrite. Science of the Total Environment, 2022, 835, 155507.	8.0	3
82	Selective sorption of PAHs from TX100 solution by resin SP850: effects of TX100 concentrations and PAHs solubility. RSC Advances, 2021, 11, 13530-13536.	3.6	2
83	An improved method to predict polycyclic aromatic hydrocarbons in surface freshwater by reducing the input parameters. Science of the Total Environment, 2022, 816, 151597.	8.0	2
84	Sonication-assisted dispersion of carbon nanotubes in aqueous solutions of the anionic surfactant SDBS: The role of sonication energy. , 2013, 58, 2082.		1
85	Isotherm nonlinearity and nonlinear partitioning of organic compounds into resin XAD-7: Insight from displacement experiments. Environmental Pollution, 2020, 267, 115563.	7.5	1
86	Predicting the total PAHs concentrations in sediments from selected congeners using a multiple linear relationship. Scientific Reports, 2022, 12, 3334.	3.3	1
87	Sorption-desorption hysteresis. , 2022, , .		0