Elefteria Psillakis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5204095/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Vacuum-assisted headspace thin-film microextraction: Theoretical formulation and method optimization for the extraction of polycyclic aromatic hydrocarbons from water samples. Analytica Chimica Acta, 2022, 1189, 339217.	2.6	11
2	Sub-ambient temperature sampling of fish volatiles using vacuum-assisted headspace solid phase microextraction: Theoretical considerations and proof of concept. Analytica Chimica Acta, 2022, 1192, 339365.	2.6	9
3	Quantification of trace transformation products of rocket fuel unsymmetrical dimethylhydrazine in sand using vacuum-assisted headspace solid-phase microextraction. Environmental Science and Pollution Research, 2022, 29, 33645-33656.	2.7	7
4	The ten principles of green sample preparation. TrAC - Trends in Analytical Chemistry, 2022, 148, 116530.	5.8	220
5	AGREEprep – Analytical greenness metric for sample preparation. TrAC - Trends in Analytical Chemistry, 2022, 149, 116553.	5.8	231
6	A Tutorial on AGREEprep an Analytical Greenness Metric for Sample Preparation. Advances in Sample Preparation, 2022, 3, 100025.	1.1	36
7	Miniaturized analytical methods for determination of environmental contaminants of emerging concern – A review. Analytica Chimica Acta, 2021, 1158, 238108.	2.6	49
8	UV-254 degradation of nicotine in natural waters and leachates produced from cigarette butts and heat-not-burn tobacco products. Environmental Research, 2021, 194, 110695.	3.7	18
9	Environmental Analysis and the Dual Grand Challenge of COVID-19 and Sustainable Development. Frontiers in Analytical Science, 2021, 1, .	1.1	0
10	UVC-induced degradation of cilastatin in natural water and treated wastewater. Chemosphere, 2021, 280, 130668.	4.2	3
11	Unconfined liquid-phase microextraction. , 2021, , 79-96.		0
12	Vacuum-assisted headspace sorptive extraction: Theoretical considerations and proof-of-concept extraction of polycyclic aromatic hydrocarbons from water samples. Analytica Chimica Acta, 2020, 1096, 100-107.	2.6	12
13	A multifaceted investigation on the effect of vacuum on the headspace solid-phase microextraction of extra-virgin olive oil. Analytica Chimica Acta, 2020, 1103, 106-114.	2.6	33
14	Editorial. Journal of Separation Science, 2020, 43, 1622-1622.	1.3	0
15	The effect of vacuum: an emerging experimental parameter to consider during headspace microextraction sampling. Analytical and Bioanalytical Chemistry, 2020, 412, 5989-5997.	1.9	14
16	A comprehensive study on the leaching of metals from heated tobacco sticks and cigarettes in water and natural waters. Science of the Total Environment, 2020, 714, 136700.	3.9	30
17	Application of in situ Solid-Phase Microextraction on Mediterranean Sponges for Untargeted Exometabolome Screening and Environmental Monitoring. Frontiers in Marine Science, 2019, 6, .	1.2	15
18	Vacuum-assisted headspace single-drop microextraction: Eliminating interfacial gas-phase limitations. Analytica Chimica Acta, 2019, 1092, 9-16.	2.6	17

#	Article	IF	CITATIONS
19	UV-induced transformation of 2,3-dibromo-5,6-dimethyl-1,4-benzoquinone in water and treated wastewater. Environmental Research, 2019, 175, 343-350.	3.7	4
20	Room temperature and sensitive determination of haloanisoles in wine using vacuum-assisted headspace solid-phase microextraction. Journal of Chromatography A, 2019, 1602, 142-149.	1.8	22
21	Real-time water quality monitoring of an artificial lake using a portable, affordable, simple, Arduino-based open source sensor. Environmental Engineering, 2019, 6, 7-14.	0.2	6
22	Vortex-assisted liquid-liquid microextraction revisited. TrAC - Trends in Analytical Chemistry, 2019, 113, 332-339.	5.8	63
23	Determination of transformation products of unsymmetrical dimethylhydrazine in water using vacuum-assisted headspace solid-phase microextraction. Journal of Chromatography A, 2018, 1555, 30-36.	1.8	29
24	Plastic pellets, meso- and microplastics on the coastline of Northern Crete: Distribution and organic pollution. Marine Pollution Bulletin, 2018, 133, 578-589.	2.3	72
25	Vacuum-assisted headspace-solid phase microextraction for determining volatile free fatty acids and phenols. Investigations on the effect of pressure on competitive adsorption phenomena in a multicomponent system. Analytica Chimica Acta, 2017, 962, 41-51.	2.6	53
26	Vacuum-assisted headspace solid-phase microextraction: A tutorial review. Analytica Chimica Acta, 2017, 986, 12-24.	2.6	84
27	Plastic pellets sorptive extraction: Low-cost, rapid and efficient extraction of polycyclic aromatic hydrocarbons from environmental waters. Analytica Chimica Acta, 2016, 922, 30-36.	2.6	15
28	Design and testing of a new sampler for simplified vacuum-assisted headspace solid-phase microextraction. Analytica Chimica Acta, 2016, 927, 46-54.	2.6	26
29	Room temperature determination of earthy-musty odor compounds in water using vacuum-assisted headspace solid-phase microextraction. Analytical Methods, 2016, 8, 8065-8071.	1.3	18
30	Fast determination of aqueous fullerene C ₆₀ aggregates by vortex-assisted liquid–liquid microextraction and liquid chromatography-mass spectrometry. Analytical Methods, 2016, 8, 4821-4827.	1.3	9
31	Vacuum-assisted headspace solid phase microextraction of polycyclic aromatic hydrocarbons in solid samples. Analytica Chimica Acta, 2015, 890, 108-116.	2.6	54
32	16th International Symposium on Advances in Extraction Technologies (ExTech 2014; Chania, Crete,) Tj ETQqC	0001gBT/0	Overlock 10 Tf
33	Rapid determination of octanol–water partition coefficient using vortex-assisted liquid–liquid microextraction. Journal of Chromatography A, 2014, 1330, 1-5.	1.8	26
34	Downsizing vacuum-assisted headspace solid phase microextraction. Journal of Chromatography A, 2013, 1300, 119-126.	1.8	40
35	Comparison of PAH Levels and Sources in Pine Needles from Portugal, Spain, and Greece. Analytical Letters, 2012, 45, 508-525.	1.0	7
36	Vacuum-assisted headspace solid phase microextraction: Improved extraction of semivolatiles by non-equilibrium headspace sampling under reduced pressure conditions. Analytica Chimica Acta, 2012,	2.6	76

non-equilibrium headspace sampling under reduced pressure conditions. Analytica Chimica Acta, 2012, 742, 30-36. 36

#	Article	IF	CITATIONS
37	Ice photolysis of 2,2′,4,4′,6-pentabromodiphenyl ether (BDE-100): Laboratory investigations using solid phase microextraction. Analytica Chimica Acta, 2012, 742, 90-96.	2.6	15
38	Effect of Henry's law constant and operating parameters on vacuum-assisted headspace solid phase microextraction. Journal of Chromatography A, 2012, 1244, 55-60.	1.8	54
39	Dissolved organic nitrogen as an indicator of livestock impacts on soil biochemical quality. Applied Geochemistry, 2011, 26, S340-S343.	1.4	11
40	Biomonitoring of Polycyclic Aromatic Hydrocarbons Contamination in the Island of Crete Using Pine Needles. Water, Air, and Soil Pollution, 2011, 215, 189-203.	1.1	19
41	Fast screening of perfluorooctane sulfonate in water using vortex-assisted liquid–liquid microextraction coupled to liquid chromatography–mass spectrometry. Analytica Chimica Acta, 2011, 691, 56-61.	2.6	74
42	Boronic aciddendrimerreceptor modified nanofibrillar cellulose membranes. Journal of Materials Chemistry, 2010, 20, 588-594.	6.7	37
43	Removal of olive mill waste water phenolics using a crude peroxidase extract from onion by-products. Environmental Chemistry Letters, 2010, 8, 271-275.	8.3	15
44	Characterization and Dispersion Modeling of Odors from a Piggery Facility. Journal of Environmental Quality, 2010, 39, 2170-2178.	1.0	8
45	Vortex-assisted liquid–liquid microextraction of octylphenol, nonylphenol and bisphenol-A. Talanta, 2010, 80, 2057-2062.	2.9	303
46	Low temperature SPME device: A convenient and effective tool for investigating photodegradation of volatile analytes. Journal of Photochemistry and Photobiology A: Chemistry, 2009, 206, 227-230.	2.0	16
47	Acid Dissociation versus Molecular Association of Perfluoroalkyl Oxoacids: Environmental Implications. Journal of Physical Chemistry A, 2009, 113, 8152-8156.	1.1	84
48	Enrichment Factors of Perfluoroalkyl Oxoanions at the Air/Water Interface. Journal of Physical Chemistry A, 2009, 113, 8826-8829.	1.1	51
49	Ultrasound-assisted emulsification–microextraction of phenolic preservatives in water. Talanta, 2009, 79, 1387-1397.	2.9	137
50	Nanofibrillar Celluloseâ€Chitosan Composite Film Electrodes: Competitive Binding of Triclosan, Fe(CN) ₆ ^{3â^'/4â^'} , and SDS Surfactant. Electroanalysis, 2008, 20, 2395-2402.	1.5	17
51	Chemically surface-modified carbon nanoparticle carrier for phenolic pollutants: Extraction and electrochemical determination of benzophenone-3 and triclosan. Analytica Chimica Acta, 2008, 616, 28-35.	2.6	64
52	Hollow-fibre liquid-phase microextraction: A simple and fast cleanup step used for PAHs determination in pine needles. Analytica Chimica Acta, 2008, 618, 70-78.	2.6	46
53	Sonochemical degradation of triclosan in water and wastewater. Ultrasonics Sonochemistry, 2008, 15, 689-694.	3.8	89
54	Thin-Film Modified Electrodes with Reconstituted Celluloseâ^'PDDAC Films for the Accumulation and Detection of Triclosan. Journal of Physical Chemistry C, 2008, 112, 2660-2666.	1.5	56

#	Article	IF	CITATIONS
55	Photocatalytic degradation of reactive black 5 in aqueous solutions: Effect of operating conditions and coupling with ultrasound irradiation. Water Research, 2007, 41, 2236-2246.	5.3	181
56	Headspace single drop microextraction of methylcyclopentadienyl-manganese tricarbonyl from water samples followed by gas chromatography–mass spectrometry. Talanta, 2007, 74, 47-51.	2.9	23
57	Microwave activation of electrochemical processes: High temperature phenol and triclosan electro-oxidation at carbon and diamond electrodes. Electrochimica Acta, 2007, 53, 1092-1099.	2.6	38
58	Developments in single-drop microextraction. Journal of Chromatography A, 2007, 1152, 184-192.	1.8	375
59	An ionic liquid as a solvent for headspace single drop microextraction of chlorobenzenes from water samples. Analytica Chimica Acta, 2007, 584, 189-195.	2.6	161
60	Microwave-assisted headspace single-drop microextration of chlorobenzenes from water samples. Analytica Chimica Acta, 2007, 592, 9-15.	2.6	58
61	Electrostatic accumulation and determination of triclosan in ultrathin carbon nanoparticle composite film electrodes. Analytica Chimica Acta, 2007, 593, 117-122.	2.6	72
62	Photolysis of 2,4-dinitrotoluene in various water solutions: effect of dissolved species. Journal of Hazardous Materials, 2007, 146, 535-539.	6.5	24
63	Application of Solid-Phase Microextraction for the Analysis of Nitropolycyclic Aromatic Hydrocarbons in Water. Chromatographia, 2006, 63, 85-89.	0.7	21
64	Odor Problems in the Food Industry. , 2006, , 1-13.		0
65	Odor Measurement. , 2006, , 15-39.		Ο
66	Preconcentration Prior to Gas Chromatography. , 2006, , 41-45.		0
67	Headspace single-drop microextraction for the analysis of chlorobenzenes in water samples. Journal of Chromatography A, 2005, 1089, 25-30.	1.8	93
68	Analysis of polycyclic aromatic hydrocarbons in wastewater treatment plant effluents using hollow fibre liquid-phase microextraction. Chemosphere, 2005, 60, 690-698.	4.2	92
69	Measuring the antioxidant activity of olive oil mill wastewater using chemiluminescence. Environment International, 2005, 31, 275-280.	4.8	40
70	Sonochemical reduction of the antioxidant activity of olive mill wastewater. Environment International, 2005, 31, 281-287.	4.8	38
71	Electrochemical oxidation of olive oil mill wastewaters. Water Research, 2005, 39, 4177-4187.	5.3	188
72	Enhancement of biodegradability of industrial wastewaters by chemical oxidation pre-treatment. Journal of Chemical Technology and Biotechnology, 2004, 79, 431-454.	1.6	337

#	Article	IF	CITATIONS
73	Degradation of polycyclic aromatic hydrocarbons in aqueous solutions by ultrasonic irradiation. Journal of Hazardous Materials, 2004, 108, 95-102.	6.5	92
74	Development of a hollow fibre liquid phase microextraction method to monitor the sonochemical degradation of explosives in water. Analytica Chimica Acta, 2004, 501, 3-10.	2.6	66
75	Single-drop microextraction for the analysis of organophosphorous insecticides in water. Analytica Chimica Acta, 2004, 516, 205-211.	2.6	111
76	Monitoring the sonochemical degradation of phthalate esters in water using solid-phase microextraction. Chemosphere, 2004, 54, 849-857.	4.2	106
77	Sonolysis of natural phenolic compounds in aqueous solutions: degradation pathways and biodegradability. Water Research, 2004, 38, 3110-3118.	5.3	58
78	Degradation of sodium dodecylbenzene sulfonate in water by ultrasonic irradiation. Water Research, 2004, 38, 3751-3759.	5.3	137
79	Hollow-fibre liquid-phase microextraction of phthalate esters from water. Journal of Chromatography A, 2003, 999, 145-153.	1.8	230
80	Developments in liquid-phase microextraction. TrAC - Trends in Analytical Chemistry, 2003, 22, 565-574.	5.8	548
81	Solid-phase microextraction to monitor the sonochemical degradation of polycyclic aromatic hydrocarbons in water. Journal of Environmental Monitoring, 2003, 5, 135-140.	2.1	33
82	Developments in single-drop microextraction. TrAC - Trends in Analytical Chemistry, 2002, 21, 54-64.	5.8	342
83	Solid-phase microextraction versus single-drop microextraction for the analysis of nitroaromatic explosives in water samples. Journal of Chromatography A, 2001, 938, 113-120.	1.8	155
84	Application of solvent microextraction to the analysis of nitroaromatic explosives in water samples. Journal of Chromatography A, 2001, 907, 211-219.	1.8	206
85	Redox-mediation of electron–electron spin–spin exchange interactions,  J  , in paramagnetic trinuclear molybdenum complexes: an example of a â€~J switch'. Dalton Transactions RSC, 2000, , 241-249.	2.3	8
86	Tetranuclear grid-like copper(II) complexes with pyrazolate bridges: syntheses, structures, magnetic and EPR spectroscopic properties. Journal of the Chemical Society Dalton Transactions, 1999, , 339-348.	1.1	65
87	Very weak electron–electron exchange interactions in paramagnetic dinuclear tris(pyrazolyl)boratomolybdenum centres with extended bridging ligands: estimation of the exchange coupling constant J by simulation of second-order EPR spectraâ€Sâ€. Journal of the Chemical Society Dalton Transactions. 1999 4341-4347.	1.1	10
88	Complexes of a new bidentate chelating pyridyl/sulfonamide ligand with copper(II), cobalt(II) and palladium(II): crystal structures and spectroscopic properties. Inorganica Chimica Acta, 1998, 278, 178-184.	1.2	65
89	Anion-Templated Assembly of a Supramolecular Cage Complex. Angewandte Chemie - International Edition, 1998, 37, 1279-1281.	7.2	292

 $_{90}$ Synthesis, crystal structure and some reactions of the ruthenacarborane complex

#	Article	IF	CITATIONS
91	[Pd(HL)Cl2] and [PdL2], where HLis 2-(3-Pyrazolyl)pyridine. Acta Crystallographica Section C: Crystal Structure Communications, 1998, 54, 609-612.	0.4	20
92	Preparation of the new podand ligand Sî—»P(pzpy)3 [pzpy = 3-(2-pyridyl)-pyrazol-1-yl], and the syntheses and crystal structures of copper(II) and copper(I) complexes of its hydrolysis product [OSP(pzpy)2]â^', and a double helical copper(I) complex of [O2P(pzpy)2]â^'. Polyhedron, 1998, 17, 1705-1714.	1.0	22
93	Complexes of the potentially hexadentate ligand bis{3-[6-(2,2′-bipyridyl)]pyrazol-1-yl}hydroborate with representative s-, p-, d- and f-block metal ions: factors promoting formation of mononuclear or double-helical dinuclear complexes. Journal of the Chemical Society Dalton Transactions, 1998, , 537-544.	1.1	50
94	Magnetic communication in acyclic mixed-valence trimolybdenum complexes mediated by redox switching. Chemical Communications, 1998, , 835-836.	2.2	2
95	A dinuclear double-helical complex of potassium ions with a compartmental bridging ligand containing two terdentate N-donor fragments. Chemical Communications, 1997, , 479-480.	2.2	22
96	Complexes of silver(I), thallium(I), lead(II) and barium(II) with bis[3-(2-pyridyl)pyrazol-1-yl]phosphinate: one-dimensional helical chains and discrete mononuclear complexes. Journal of the Chemical Society Dalton Transactions, 1997, , 1645-1651.	1.1	66
97	Copper(II)-templated assembly of tetranuclear grid-like complexes from simple pyridine–pyrazole ligands. Chemical Communications, 1997, , 175-176.	2.2	53
98	Square-prismatic vs. square-antiprismatic coordination in complexes of lead(II) with a simple bidentate chelating ligand; effects of intermolecular hydrogen bonding. Chemical Communications, 1997, , 1965.	2.2	16
99	Lanthanide Complexes of the Hexadentate N-Donor Podand Tris[3-(2-pyridyl)pyrazolyl]hydroborate:Â Solid-State and Solution Properties. Inorganic Chemistry, 1997, 36, 10-18.	1.9	154
100	Lanthanide complexes of the tetradentate N-donor ligand dihydrobis[3-(2-pyridyl)pyrazolyl]borate and the terdentate N-donor ligand 2,6-bis(1H-pyrazol-3-yl)pyridine: syntheses, crystal structures and solution structures based on luminescence lifetime studies. Journal of the Chemical Society Dalton Transactions, 1997, , 2079-2086.	1.1	56
101	The coordination chemistry of mixed pyridine-phenol and phenanthroline-phenol ligands; The crystal structure of 2-(2-hydroxyphenyl)-1,10-phenanthroline (HL) and the crystal structure and properties of [FeL2][PF6]. Polyhedron, 1995, 14, 599-604.	1.0	12
102	Crystal structures of silver(I) and thallium(I) complexes of tris[3-(2-pyridyl)-pyrazol-1-yl]borate; encapsulation of either a single thallium(I) ion or a trinuclear silver(I) cluster by a hexadentate podand. Journal of the Chemical Society Chemical Communications, 1995, , 1175.	2.0	47
103	A study of crystal packing in a series of closely related square-planar palladium(II) and platinum(II) complexes. Polyhedron, 1994, 13, 2291-2300.	1.0	25
104	Syntheses of 4-benzyl-3,5-dimethylpyrazolylborato complexes of molybdenum and tungsten nitrosyls: molecular structure of [Mo(CO)2(NO){HB(3,5-Me2-4-PhCH2C3N2)3}], a complex with an â€ĩinverted' bowl-like structure. Journal of the Chemical Society Dalton Transactions, 1994, , 2559-2564.	1.1	18
105	Endocrine disrupting compounds in olive oil. , 0, , 21-27.		Ο