Peter M Fischer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5203875/publications.pdf

Version: 2024-02-01

38742 56724 8,051 156 50 83 citations h-index g-index papers 165 165 165 10228 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Distribution of a highly lipophilic drug cannabidiol into different lymph nodes following oral administration in lipidic vehicle. European Journal of Pharmaceutics and Biopharmaceutics, 2022, 174, 29-34.	4.3	10
2	Vegetable oils composition affects the intestinal lymphatic transport and systemic bioavailability of co-administered lipophilic drug cannabidiol. International Journal of Pharmaceutics, 2022, 624, 121947.	5.2	7
3	Targeted delivery of lopinavir to HIV reservoirs in the mesenteric lymphatic system by lipophilic ester prodrug approach. Journal of Controlled Release, 2021, 329, 1077-1089.	9.9	25
4	Strawberry Decreases Intraluminal and Intestinal Wall Hydrolysis of Testosterone Undecanoate. Molecules, 2021, 26, 233.	3.8	0
5	Structure-based design of highly selective 2,4,5-trisubstituted pyrimidine CDK9 inhibitors as anti-cancer agents. European Journal of Medicinal Chemistry, 2021, 214, 113244.	5.5	10
6	Natural sesame oil is superior to pre-digested lipid formulations and purified triglycerides in promoting the intestinal lymphatic transport and systemic bioavailability of cannabidiol. European Journal of Pharmaceutics and Biopharmaceutics, 2021, 162, 43-49.	4.3	19
7	Oral administration of tipranavir with long-chain triglyceride results in moderate intestinal lymph targeting but no efficient delivery to HIV-1 reservoir in mesenteric lymph nodes. International Journal of Pharmaceutics, 2021, 602, 120621.	5.2	8
8	Design, Synthesis and In-Vitro Biological Evaluation of Antofine and Tylophorine Prodrugs as Hypoxia-Targeted Anticancer Agents. Molecules, 2021, 26, 3327.	3.8	2
9	Inclusion of Medium-Chain Triglyceride in Lipid-Based Formulation of Cannabidiol Facilitates Micellar Solubilization In Vitro, but In Vivo Performance Remains Superior with Pure Sesame Oil Vehicle. Pharmaceutics, 2021, 13, 1349.	4.5	9
10	Administration in fed state but not controlled release in the colon increases oral bioavailability of DF030263, a promising drug candidate for chronic lymphocytic leukemia. European Journal of Pharmaceutics and Biopharmaceutics, 2021, 165, 106-112.	4.3	0
11	Discovery of Highly Selective Inhibitors of Calmodulin-Dependent Kinases That Restore Insulin Sensitivity in the Diet-Induced Obesity <i>in Vivo</i> Mouse Model. Journal of Medicinal Chemistry, 2020, 63, 6784-6801.	6.4	12
12	Development and validation of a costâ€effective and sensitive bioanalytical HPLCâ€UV method for determination of lopinavir in rat and human plasma. Biomedical Chromatography, 2020, 34, e4934.	1.7	6
13	Using Esterase Selectivity to Determine the <i>In Vivo</i> Duration of Systemic Availability and Abolish Systemic Side Effects of Topical \hat{I}^2 -Blockers. ACS Pharmacology and Translational Science, 2020, 3, 737-748.	4.9	2
14	Identification of a novel toxicophore in anti-cancer chemotherapeutics that targets mitochondrial respiratory complex I. ELife, 2020, 9, .	6.0	14
15	A novel nucleoside rescue metabolic pathway may be responsible for therapeutic effect of orally administered cordycepin. Scientific Reports, 2019, 9, 15760.	3.3	17
16	Crystal structures of the recombinant \hat{l}^2 -factor XIIa protease with bound Thr-Arg and Pro-Arg substrate mimetics. Acta Crystallographica Section D: Structural Biology, 2019, 75, 578-591.	2.3	14
17	1â€Hydroxyâ€xanthine derivatives inhibit the human Caf1 nuclease and Caf1â€containing nuclease complexes via Mg 2+ â€dependent binding. FEBS Open Bio, 2019, 9, 717-727.	2.3	3
18	Binding of ISRIB reveals a regulatory site in the nucleotide exchange factor eIF2B. Science, 2018, 359, 1533-1536.	12.6	157

#	Article	IF	CITATIONS
19	Multiple Linear Regression Modeling To Predict the Stability of Polymer–Drug Solid Dispersions: Comparison of the Effects of Polymers and Manufacturing Methods on Solid Dispersion Stability. Molecular Pharmaceutics, 2018, 15, 1826-1841.	4.6	12
20	Molecular profiling and combinatorial activity of <scp>CCT</scp> 068127: a potent <scp>CDK</scp> 2 and <scp>CDK</scp> 9 inhibitor. Molecular Oncology, 2018, 12, 287-304.	4.6	33
21	Design of Small-Molecule Active-Site Inhibitors of the S1A Family Proteases as Procoagulant and Anticoagulant Drugs. Journal of Medicinal Chemistry, 2018, 61, 3799-3822.	6.4	22
22	The Meisenheimer Complex as a Paradigm in Drug Discovery: Reversible Covalent Inhibition through C67 of the ATP Binding Site of PLK1. Cell Chemical Biology, 2018, 25, 1107-1116.e4.	5.2	11
23	Lipophilic activated ester prodrug approach for drug delivery to the intestinal lymphatic system. Journal of Controlled Release, 2018, 286, 10-19.	9.9	41
24	Quantitative analysis of lab-to-lab variability in Caco-2 permeability assays. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 114, 38-42.	4.3	61
25	Novel selective \hat{l}^2 ₁ $\hat{a} \in a$ drenoceptor antagonists for concomitant cardiovascular and respiratory disease. FASEB Journal, 2017, 31, 3150-3166.	0.5	16
26	Development of Cordycepin Formulations for Preclinical and Clinical Studies. AAPS PharmSciTech, 2017, 18, 3219-3226.	3.3	16
27	Oral administration of cannabis with lipids leads to high levels of cannabinoids in the intestinal lymphatic system and prominent immunomodulation. Scientific Reports, 2017, 7, 14542.	3.3	93
28	Simple and sensitive HPLC-UV method for determination of bexarotene in rat plasma. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2017, 1040, 73-80.	2.3	16
29	Approved and Experimental Smallâ€Molecule Oncology Kinase Inhibitor Drugs: A Midâ€2016 Overview. Medicinal Research Reviews, 2017, 37, 314-367.	10.5	65
30	GPCRs through the keyhole: the role of protein flexibility in ligand binding to \hat{l}^2 -adrenoceptors. Journal of Biomolecular Structure and Dynamics, 2017, 35, 2604-2619.	3.5	5
31	PPP1R15A-mediated dephosphorylation of eIF2 $\hat{l}\pm$ is unaffected by Sephin1 or Guanabenz. ELife, 2017, 6, .	6.0	88
32	Survival of the Fittest: Time-To-Event Modeling of Crystallization of Amorphous Poorly Soluble Drugs. Journal of Pharmaceutical Sciences, 2016, 105, 1858-1866.	3.3	5
33	Design of nucleotide-mimetic and non-nucleotide inhibitors of the translation initiation factor eIF4E: Synthesis, structural and functional characterisation. European Journal of Medicinal Chemistry, 2016, 124, 200-217.	5.5	23
34	Support Tools in Formulation Development for Poorly Soluble Drugs. Journal of Pharmaceutical Sciences, 2016, 105, 2260-2269.	3.3	32
35	Dietary fats and pharmaceutical lipid excipients increase systemic exposure to orally administered cannabis and cannabis-based medicines. American Journal of Translational Research (discontinued), 2016, 8, 3448-59.	0.0	47
36	Development of a simple and sensitive HPLC–UV method for the simultaneous determination of cannabidiol and Δ9-tetrahydrocannabinol in rat plasma. Journal of Pharmaceutical and Biomedical Analysis, 2015, 114, 145-151.	2.8	56

#	Article	IF	CITATIONS
37	Coagulation factorÂXII protease domain crystal structure. Journal of Thrombosis and Haemostasis, 2015, 13, 580-591.	3.8	48
38	Mutations in a translation initiation factor identify the target of a memory-enhancing compound. Science, 2015, 348, 1027-1030.	12.6	195
39	Discovery, synthesis and biochemical profiling of purine-2,6-dione derivatives as inhibitors of the human poly(A)-selective ribonuclease Caf1. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 4219-4224.	2.2	10
40	Long-Term Amorphous Drug Stability Predictions Using Easily Calculated, Predicted, and Measured Parameters. Molecular Pharmaceutics, 2015, 12, 3389-3398.	4.6	38
41	Partial restoration of protein synthesis rates by the small molecule ISRIB prevents neurodegeneration without pancreatic toxicity. Cell Death and Disease, 2015, 6, e1672-e1672.	6.3	260
42	Investigation of the Flexibility of Protein Kinases Implicated in the Pathology of Alzheimer's Disease. Molecules, 2014, 19, 9134-9159.	3.8	14
43	Targeting RNA transcription and translation in ovarian cancer cells with pharmacological inhibitor CDKI-73. Oncotarget, 2014, 5, 7691-7704.	1.8	48
44	A fluorescence-based assay suitable for quantitative analysis of deadenylase enzyme activity. Nucleic Acids Research, 2014, 42, e30-e30.	14.5	25
45	A facile approach to tryptophan derivatives for the total synthesis of argyrin analogues. Organic and Biomolecular Chemistry, 2014, 12, 9764-9768.	2.8	27
46	Design, synthesis and SAR exploration of tri-substituted 1,2,4-triazoles as inhibitors of the annexin A2–S100A10 protein interaction. Bioorganic and Medicinal Chemistry, 2014, 22, 5378-5391.	3.0	46
47	A novel Cdk9 inhibitor preferentially targets tumor cells and synergizes with fludarabine. Oncotarget, 2014, 5, 375-385.	1.8	73
48	5-Deazaflavin derivatives as inhibitors of p53 ubiquitination by HDM2. Bioorganic and Medicinal Chemistry, 2013, 21, 6868-6877.	3.0	16
49	Synthesis, structure–activity relationship and biological evaluation of 2,4,5-trisubstituted pyrimidine CDK inhibitors as potential anti-tumour agents. European Journal of Medicinal Chemistry, 2013, 70, 447-455.	5.5	45
50	Comparative Structural and Functional Studies of 4-(Thiazol-5-yl)-2-(phenylamino)pyrimidine-5-carbonitrile CDK9 Inhibitors Suggest the Basis for Isotype Selectivity. Journal of Medicinal Chemistry, 2013, 56, 660-670.	6.4	51
51	Synthesis and in Vitro and in Vivo Characterization of Highly \hat{l}^2 ₁ -Selective \hat{l}^2 -Adrenoceptor Partial Agonists. Journal of Medicinal Chemistry, 2013, 56, 3852-3865.	6.4	20
52	Substituted 4-(Thiazol-5-yl)-2-(phenylamino)pyrimidines Are Highly Active CDK9 Inhibitors: Synthesis, X-ray Crystal Structures, Structure–Activity Relationship, and Anticancer Activities. Journal of Medicinal Chemistry, 2013, 56, 640-659.	6.4	111
53	Oral Treatment Targeting the Unfolded Protein Response Prevents Neurodegeneration and Clinical Disease in Prion-Infected Mice. Science Translational Medicine, 2013, 5, 206ra138.	12.4	480
54	Small molecules that bind the Mdm2 RING stabilize and activate p53. Carcinogenesis, 2012, 33, 791-798.	2.8	38

#	Article	IF	Citations
55	Synthetic lethal targeting of DNA doubleâ€strand break repair deficient cells by human apurinic/apyrimidinic endonuclease inhibitors. International Journal of Cancer, 2012, 131, 2433-2444.	5.1	79
56	Threeâ€Dimensional Pharmacophore Design and Biochemical Screening Identifies Substituted 1,2,4â€Triazoles as Inhibitors of the Annexinâ€A2–S100A10 Protein Interaction. ChemMedChem, 2012, 7, 1435-1446.	3.2	34
57	In vitro antitumor mechanism of a novel cyclin-dependent kinase inhibitor CDKI-83. Investigational New Drugs, 2012, 30, 889-897.	2.6	14
58	CDKIâ€71, a novel CDK9 inhibitor, is preferentially cytotoxic to cancer cells compared to flavopiridol. International Journal of Cancer, 2012, 130, 1216-1226.	5.1	54
59	End-stapled homo and hetero collagen triple helices: a click chemistry approach. Chemical Communications, 2011, 47, 2589-2591.	4.1	29
60	Development and evaluation of human AP endonuclease inhibitors in melanoma and glioma cell lines. British Journal of Cancer, 2011, 104, 653-663.	6.4	63
61	Design, synthesis and biological evaluation of 6-pyridylmethylaminopurines as CDK inhibitors. Bioorganic and Medicinal Chemistry, 2011, 19, 6949-6965.	3.0	31
62	Design, Synthesis, and Structurea $^{\circ}$ Activity Relationship Exploration of 1-Substituted 4-Aroyl-3-hydroxy-5-phenyl-1 <i>H</i> -pyrrol-2(5 <i>H</i>)-one Analogues as Inhibitors of the Annexin A2a $^{\circ}$ S100A10 Protein Interaction. Journal of Medicinal Chemistry, 2011, 54, 2080-2094.	6.4	58
63	Immunosuppressive but Non-LasR-Inducing Analogues of the <i>Pseudomonas aeruginosa</i> Quorum-Sensing Molecule <i>N</i> -(3-Oxododecanoyl)- <scp>I</scp> -homoserine Lactone. Journal of Medicinal Chemistry, 2011, 54, 3348-3359.	6.4	30
64	Small-molecule inhibitors of MDM2 as new anticancer therapeutics. Seminars in Cancer Biology, 2010, 20, 10-18.	9.6	80
65	Discovery and Characterization of 2-Anilino-4- (Thiazol-5-yl)Pyrimidine Transcriptional CDK Inhibitors as Anticancer Agents. Chemistry and Biology, 2010, 17, 1111-1121.	6.0	92
66	A Cy5-Labeled S100A10 Tracer Used to Identify Inhibitors of the Protein Interaction With Annexin A2. Assay and Drug Development Technologies, 2010, 8, 85-95.	1.2	12
67	Discovery of $\langle i \rangle N \langle i \rangle$ -Phenyl-4-(thiazol-5-yl)pyrimidin-2-amine Aurora Kinase Inhibitors. Journal of Medicinal Chemistry, 2010, 53, 4367-4378.	6.4	91
68	Design, Synthesis, and Evaluation of 2-Methyl- and 2-Amino-N-aryl-4,5-dihydrothiazolo[4,5-h]quinazolin-8-amines as Ring-Constrained 2-Anilino-4-(thiazol-5-yl)pyrimidine Cyclin-Dependent Kinase Inhibitors. Journal of Medicinal Chemistry, 2010, 53, 2136-2145.	6.4	31
69	Cap in hand: Targeting elF4E. Cell Cycle, 2009, 8, 2535-2541.	2.6	62
70	Truncation and Optimisation of Peptide Inhibitors of Cyclin-Dependent Kinase 2-Cyclinâ€A Through Structure-Guided Design. ChemMedChem, 2009, 4, 1120-1128.	3.2	17
71	A Study of CDK2 Inhibitors Using a Novel 3Dâ€QSAR Method Exploiting Receptor Flexibility. QSAR and Combinatorial Science, 2009, 28, 878-884.	1.4	6
72	Computational chemistry approaches to drug discovery in signal transduction. Biotechnology Journal, 2008, 3, 452-470.	3.5	21

#	Article	IF	Citations
73	Turning down tau phosphorylation. Nature Chemical Biology, 2008, 4, 448-449.	8.0	11
74	Cell cycle inhibitors in cancer: current status and future directions. , 2008, , 253-283.		6
75	Cyclin-dependent kinase 9: a key transcriptional regulator and potential drug target in oncology, virology and cardiology. Trends in Pharmacological Sciences, 2008, 29, 302-313.	8.7	192
76	Active Site Pressurization: A New Tool for Structure-Guided Drug Design and Other Studies of Protein Flexibility. Journal of Chemical Information and Modeling, 2008, 48, 1448-1454.	5.4	24
77	2-[(1-Methylpropyl)dithio]- $1 < i > H < / i > -i $ imidazole inhibits tubulin polymerization through cysteine oxidation. Molecular Cancer Therapeutics, 2008, 7, 143-151.	4.1	7 5
78	Role of Key Transmembrane Residues in Agonist and Antagonist Actions at the Two Conformations of the Human Î ² 1-Adrenoceptor. Molecular Pharmacology, 2008, 74, 1246-1260.	2.3	20
79	Exploiting glycogen synthase kinase $3\hat{l}^2$ flexibility in molecular recognition. Biochemical Society Transactions, 2008, 36, 55-58.	3.4	6
80	Classical Anticytokinins Do Not Interact with Cytokinin Receptors but Inhibit Cyclin-dependent Kinases. Journal of Biological Chemistry, 2007, 282, 14356-14363.	3.4	20
81	Crystallographic and Mass Spectrometric Characterisation of eIF4E with N7-alkylated Cap Derivatives. Journal of Molecular Biology, 2007, 372, 7-15.	4.2	68
82	Cellular uptake mechanisms and potential therapeutic utility of peptidic cell delivery vectors: Progress 2001–2006. Medicinal Research Reviews, 2007, 27, 755-795.	10.5	69
83	Analytical techniques. Current Opinion in Chemical Biology, 2007, 11, 477-479.	6.1	0
84	Untangling tau hyperphosphorylation in drug design for neurodegenerative diseases. Nature Reviews Drug Discovery, 2007, 6, 464-479.	46.4	376
85	Pharmacological targeting of lysine acetyltransferases in human disease: a progress report. Drug Discovery Today, 2007, 12, 88-99.	6.4	35
86	4-Arylazo-3,5-diamino-1H-pyrazole CDK Inhibitors:  SAR Study, Crystal Structure in Complex with CDK2, Selectivity, and Cellular Effects. Journal of Medicinal Chemistry, 2006, 49, 6500-6509.	6.4	166
87	Protein Structures in Virtual Screening:Â A Case Study with CDK2. Journal of Medicinal Chemistry, 2006, 49, 92-104.	6.4	48
88	Inhibitors of Polo-like kinase reveal roles in spindle-pole maintenance., 2006, 2, 608-617.		92
89	Synthesis and biological activity of conjugates between paclitaxel and the cell delivery vector penetratin. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 2628-2631.	2.2	16
90	Differential Binding of Inhibitors to Active and Inactive CDK2 Provides Insights for Drug Design. Chemistry and Biology, 2006, 13, 201-211.	6.0	58

#	Article	IF	Citations
91	Peptide, Peptidomimetic, and Small-molecule Antagonists of the p53–HDM2 Protein–Protein Interaction. International Journal of Peptide Research and Therapeutics, 2006, 12, 3-19.	1.9	33
92	REPLACE: A Strategy for Iterative Design of Cyclin-Binding Groove Inhibitors. ChemBioChem, 2006, 7, 1909-1915.	2.6	40
93	Efficient Palladium-Catalyzed Cross-Coupling of ?-Chloroalkylidene/Arylidene Malonates Using Microwave Chemistry ChemInform, 2005, 36, no.	0.0	0
94	Antiproliferative activity of olomoucine II, a novel 2,6,9-trisubstituted purine cyclin-dependent kinase inhibitor. Cellular and Molecular Life Sciences, 2005, 62, 1763-1771.	5.4	50
95	Progress in the Discovery of Polo-like Kinase Inhibitors. Current Topics in Medicinal Chemistry, 2005, 5, 181-197.	2.1	114
96	Strategies for the Design of Potent and Selective Kinase Inhibitors. Current Pharmaceutical Design, 2005, 11, 1845-1863.	1.9	58
97	In vitro and In vivo Pharmacokinetic-Pharmacodynamic Relationships for the Trisubstituted Aminopurine Cyclin-Dependent Kinase Inhibitors Olomoucine, Bohemine and CYC202. Clinical Cancer Research, 2005, 11, 4875-4887.	7.0	127
98	Recent progress in the discovery and development of cyclin-dependent kinase inhibitors. Expert Opinion on Investigational Drugs, 2005, 14, 457-477.	4.1	112
99	Structural and biochemical studies of human proliferating cell nuclear antigen complexes provide a rationale for cyclin association and inhibitor design. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 1871-1876.	7.1	121
100	Structure of Free MDM2 N-terminal Domain Reveals Conformational Adjustments that Accompany p53-binding. Journal of Molecular Biology, 2005, 350, 587-598.	4.2	132
101	Cyclin-dependent kinase inhibitors: Discovery, development and target rationale for different therapeutic applications. Drugs of the Future, 2005, 30, 911.	0.1	15
102	The Design of Drug Candidate Molecules as Selective Inhibitors of Therapeutically Relevant Protein Kinases. Current Medicinal Chemistry, 2004, 11, 1563-1583.	2.4	116
103	Turning the key on p53. Nature, 2004, 427, 789-790.	27.8	37
104	The Use of CDK Inhibitors in Oncology: A Pharmaceutical Perspective. Cell Cycle, 2004, 3, 740-744.	2.6	40
105	2-Anilino-4-(thiazol-5-yl)pyrimidine CDK Inhibitors:Â Synthesis, SAR Analysis, X-ray Crystallography, and Biological Activity. Journal of Medicinal Chemistry, 2004, 47, 1662-1675.	6.4	156
106	Synthesis and biological activity of 2-anilino-4-(1H-pyrrol-3-yl) pyrimidine CDK inhibitors. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 4237-4240.	2.2	60
107	Structural Determinants of CDK4 Inhibition and Design of Selective ATP Competitive Inhibitors. Chemistry and Biology, 2004, 11, 525-534.	6.0	59
108	Targeting the cell cycle. Drug Discovery Today: Therapeutic Strategies, 2004, 1, 417-423.	0.5	0

#	Article	IF	CITATIONS
109	Design, synthesis, biological activity and structural analysis of cyclic peptide inhibitors targeting the substrate recruitment site of cyclin-dependent kinase complexes. Organic and Biomolecular Chemistry, 2004, 2, 2735.	2.8	53
110	Small-molecule inhibitors of the p53 suppressor HDM2: have protein–protein interactions come of age as drug targets?. Trends in Pharmacological Sciences, 2004, 25, 343-346.	8.7	74
111	Efficient Palladium-Catalyzed Cross-Coupling of β-Chloroalkylidene/arylidene Malonates Using Microwave Chemistry. Journal of Organic Chemistry, 2004, 69, 6920-6922.	3.2	34
112	The use of CDK inhibitors in oncology: a pharmaceutical perspective. Cell Cycle, 2004, 3, 742-6.	2.6	8
113	Discovery of a Novel Family of CDK Inhibitors with the Program LIDAEUS. Structure, 2003, 11, 399-410.	3.3	115
114	Cell cycle target validation: approaches and successes. Targets, 2003, 2, 154-161.	0.3	1
115	Insights into Cyclin Groove Recognition. Structure, 2003, 11, 1537-1546.	3.3	52
116	Diketopiperazines in Peptide and Combinatorial Chemistry. ChemInform, 2003, 34, no.	0.0	0
117	CDK versus GSK-3 Inhibition. Chemistry and Biology, 2003, 10, 1144-1146.	6.0	23
118	Diketopiperazines in peptide and combinatorial chemistry. Journal of Peptide Science, 2003, 9, 9-35.	1.4	187
119	CDK inhibitors in clinical development for the treatment of cancer. Expert Opinion on Investigational Drugs, 2003, 12, 955-970.	4.1	107
120	New Lupane Derived Compounds with Pro-Apoptotic Activity in Cancer Cells:  Synthesis and Structureâ^'Activity Relationships. Journal of Medicinal Chemistry, 2003, 46, 5402-5415.	6.4	83
121	The p53-Mdm2 Pathway: Targets for the Development of New Anticancer Therapeutics. Mini-Reviews in Medicinal Chemistry, 2003, 3, 257-270.	2.4	37
122	Peptidomimetic Design of CDK Inhibitors Targeting theRecruitment Site of the Cyclin Subunit. Anti-Cancer Agents in Medicinal Chemistry, 2003, 3, 57-69.	7.0	39
123	The Design, Synthesis and Application of Stereochemical and Directional Peptide Isomers: A Critical Review. Current Protein and Peptide Science, 2003, 4, 339-356.	1.4	115
124	A Cyclic Pentapeptide Derived from the Second EGF-Like Domain of Factor VII Is an Inhibitor of Tissue Factor Dependent Coagulation and Thrombus Formation. Thrombosis and Haemostasis, 2002, 87, 13-21.	3.4	15
125	<i>In vitro</i> and <i>in vivo</i> antitumor properties of the cyclin dependent kinase inhibitor CYC202 (Râ€roscovitine). International Journal of Cancer, 2002, 102, 463-468.	5.1	371
126	Highly potent p21WAF1 -derived peptide inhibitors of CDK-mediated pRb phosphorylation: Delineation and structural insight into their interactions with cyclinâ€∫A. Chemical Biology and Drug Design, 2002, 60, 257-270.	1.1	53

#	Article	lF	Citations
127	Peptide inhibitors of CDK2-cyclin A that target the cyclin recruitment-Site: structural variants of the C-Terminal Phe. Bioorganic and Medicinal Chemistry Letters, 2002, 12, 2501-2505.	2.2	18
128	Liquid-phase peptide synthesis on polyethylene glycol (PEG) supports using strategies based on the 9-fluorenylmethoxycarbonyl amino protecting group: application of PEGylated peptides in biochemical assays. Journal of Peptide Science, 2002, 8, 529-542.	1.4	33
129	Cellular Delivery of Impermeable Effector Molecules in the Form of Conjugates with Peptides Capable of Mediating Membrane Translocation. Bioconjugate Chemistry, 2001, 12, 825-841.	3.6	127
130	Synthesis and configuration of the cyclin-dependent kinase inhibitor roscovitine and its enantiomer. Tetrahedron: Asymmetry, 2001, 12, 2891-2894.	1.8	35
131	Synthesis, biological activity, and solution structures of a cyclic dodecapeptide from the EGF-2 domain of blood coagulation factor VII. Chemical Biology and Drug Design, 2001, 57, 462-472.	1.1	2
132	Structure-activity relationship of truncated and substituted analogues of the intracellular delivery vector Penetratin. Chemical Biology and Drug Design, 2000, 55, 163-172.	1.1	146
133	Inhibitors of Cyclin-Dependent Kinases as Anti-Cancer Therapeutics. Current Medicinal Chemistry, 2000, 7, 1213-1245.	2.4	149
134	A Quantitative Study of the in Vitro Binding of the C-Terminal Domain of p21 to PCNA:Â Affinity, Stoichiometry, and Thermodynamics. Biochemistry, 2000, 39, 7388-7397.	2.5	78
135	A Versatile Polymer-Supported 4-(4-Methylphenyl(chloro)methyl)phenoxy Linker for Solid-Phase Synthesis of Pseudopeptides Journal of Organic Chemistry, 2000, 65, 5076-5076.	3.2	0
136	A Versatile Polymer-Supported 4-(4-Methylphenyl(chloro)methyl)phenoxy Linker for Solid-Phase Synthesis of Pseudopeptides. Journal of Organic Chemistry, 2000, 65, 5048-5056.	3.2	20
137	New approaches to cancer therapies. Journal of Pathology, 1999, 187, 138-146.	4.5	19
138	Linear analogues derived from the first EGF-like domain of human blood coagulation factor VII: enhanced inhibition of FVIIa/TF complex activity by backbone modification through aspartimide formation., 1999, 5, 323-329.		4
139	Efficient Synthesis of Differentially Protected (S,S)-2,7- Diaminooctanedioic Acid, the Dicarba Analogue of Cystine. Helvetica Chimica Acta, 1998, 81, 2053-2061.	1.6	10
140	Synthesis and activity of dimeric bradykinin antagonists containing diaminodicarboxylic acid bridge residues., 1998, 4, 289-293.		9
141	A Peptide Sequence from Mouse Tissue Factor Inhibits Human Tissue Factor Dependent Factor X Activation. Thrombosis Research, 1998, 92, 135-140.	1.7	0
142	Design of Low Molecular Weight Hematoregulatory Agents from the Structureâ ⁻ 'Activity Relationship of a Dimeric Pentapeptide. Journal of Medicinal Chemistry, 1997, 40, 2876-2882.	6.4	4
143	Unexpected lability of cysteine acetamidomethyl thiol protecting group Tyrosine ring alkylation and disulfide bond formation upon acidolysis. Chemical Biology and Drug Design, 1997, 49, 341-346.	1.1	23
144	Peptides corresponding to the second epidermal growth factorâ€like domain of human blood coagulation factor VII: synthesis, folding and biological activity. Chemical Biology and Drug Design, 1997, 50, 475-482.	1.1	9

#	Article	IF	Citations
145	Synthesis of \hat{Ni} ±-(9-Fluorenylmethoxycarbonyl)-Allothreonine t-Butyl Ether via Threonine Oxazolines. Tetrahedron Letters, 1995, 36, 5409-5412.	1.4	6
146	Synthesis of $\hat{\text{Nl\pm}}$ -(9-fluorenylmethoxycarbonyl)-allothreonine t-butyl ether via threonine oxazolines. Tetrahedron Letters, 1995, 36, 5409-5412.	1.4	6
147	Solution synthesis of a dimeric pentapeptide: Diketopiperazine cyclisation of Glu-Asp dipeptide esters and Asp-racemisation during segment condensation. Tetrahedron, 1994, 50, 2277-2288.	1.9	22
148	Synthetic peptide antigens of tetanus toxin. Molecular Immunology, 1994, 31, 1141-1148.	2.2	6
149	Application of antiâ€peptide antibodies to the assignment of the interâ€chain disulphide bond in tetanus toxin. International Journal of Peptide and Protein Research, 1993, 41, 415-419.	0.1	1
150	Application of t-butyldimethylsilyl ethers of serine, threonine and tyrosine in peptide syntheshsis. Tetrahedron Letters, 1992, 33, 7605-7608.	1.4	25
151	Application of arylsulphonyl sideâ€chain protected arginines in solidâ€phase peptide synthesis based on 9― fluorenylmethoxycarbonyl amino protecting strategy. International Journal of Peptide and Protein Research, 1992, 40, 19-24.	0.1	12
152	Solidâ€phase peptide synthesis without sideâ€chain hydroxyl protection of threonine. International Journal of Peptide and Protein Research, 1991, 38, 491-493.	0.1	15
153	Direct Enzyme-Linked Immunosorbent Assay of Anti-Peptide Antibodies Using Capture of Biotinylated Peptides by Immobilized Avidin. Journal of Immunoassay, 1990, 11, 311-327.	0.3	14
154	Analysis of 4-N,N-dimethylaminoazobenzene 4′-thiohydantoin amino acids at sub-picomole levels by high-performance liquid chromatography: Simultaneous manual sequencing of picomole quantities of several polypeptides. Analytical Biochemistry, 1989, 177, 46-49.	2.4	5
155	Direct immunization with synthetic peptidyl-polyamide resin. Journal of Immunological Methods, 1989, 118, 119-123.	1.4	17
156	Formation of cyclized, including 3,5-cyclosteroid, alkenes from \hat{l}^2 , \hat{l}^3 -unsaturated Grignard reagents induced by elimination of a \hat{l} -alkoxy group. Journal of the Chemical Society Perkin Transactions 1, 1987, , 475-479.	0.9	6