Sefik Suzer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5203577/publications.pdf

Version: 2024-02-01

all docs

62 1,655 23 39 g-index

64 64 64 2198

times ranked

citing authors

docs citations

#	Article	IF	Citations
1	Localized X-ray photoelectron impedance spectroscopy (LoXPIS) for capturing charge dynamics of an ionic liquid electrolyte within an energy storage device. Faraday Discussions, 2022, 236, 86-102.	3.2	1
2	6p valence relativistic effects in 5d photoemission spectrum of Pb atom and bonding properties of Pb-dimer using Dirac–Hartree–Fock formalism including many-body effects. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2022, 40, 043205.	2.1	0
3	Probing the Dynamics of Non-Faradaic Processes in Ionic Liquids at Extended Time and Length Scales Using XPS with AC Modulation. Journal of Physical Chemistry C, 2021, 125, 9453-9460.	3.1	8
4	Comparative <i>Operando</i> XPS and SEM Spatiotemporal Potential Mapping of Ionic Liquid Polarization in a Coplanar Electrochemical Device. Analytical Chemistry, 2021, 93, 13268-13273.	6.5	10
5	Surface Propensity of Anions in a Binary Ionicâ€Liquid Mixture Assessed by Fullâ€Range Angleâ€Resolved Xâ€ray Photoelectron Spectroscopy and Surfaceâ€Tension Measurements. ChemPhysChem, 2020, 21, 2397-2401.	2.1	3
6	Lab-based operando x-ray photoelectron spectroscopy for probing low-volatile liquids and their interfaces across a variety of electrosystems. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2020, 38, .	2.1	7
7	Chemically addressed switching measurements in graphene electrode memristive devices using in situ XPS. Faraday Discussions, 2019, 213, 231-244.	3.2	7
8	Coarse-Grained Electrostatic Model Including Ion-Pairing Equilibrium That Explains DC and AC X-ray Photoelectron Spectroscopy Measurements on Ionic Liquids. Journal of Physical Chemistry C, 2019, 123, 13192-13200.	3.1	6
9	AC Electrowetting Modulation of Low-Volatile Liquids Probed by XPS: Dipolar vs Ionic Screening. Langmuir, 2019, 35, 3319-3326.	3.5	10
10	X-ray Photoelectron Spectroscopy with Electrical Modulation Can Be Used to Probe Electrical Properties of Liquids and Their Interfaces at Different Stages. Langmuir, 2019, 35, 16989-16999.	3 . 5	7
11	In Situ XPS Reveals Voltage Driven Asymmetric Ion Movement of an Ionic Liquid through the Pores of a Multilayer Graphene Electrode. Journal of Physical Chemistry C, 2018, 122, 11883-11889.	3.1	24
12	Graphene-Based Adaptive Thermal Camouflage. Nano Letters, 2018, 18, 4541-4548.	9.1	252
13	XPS investigation of the vacuum interface of an ionic liquid under triangular electrical excitation for slow transients. Analytical Methods, 2018, 10, 4225-4228.	2.7	4
14	DC Electrowetting of Nonaqueous Liquid Revisited by XPS. Langmuir, 2018, 34, 7301-7308.	3 . 5	13
15	Simulations and Experiments of the Kinetics of the Electrochemical Double Layer in Ionic Liquids. ECS Meeting Abstracts, 2018, , .	0.0	O
16	Electrowetting of Liquid Drops Revisited By XPS. ECS Meeting Abstracts, 2018, , .	0.0	0
17	In-Situ XPS Monitoring and Characterization of Electrochemically Prepared Au Nanoparticles in an Ionic Liquid. ACS Omega, 2017, 2, 478-486.	3 . 5	34
18	XPS-evidence for in-situ electrochemically-generated carbene formation. Electrochimica Acta, 2017, 234, 37-42.	5.2	28

#	Article	IF	CITATIONS
19	Raman and X-Ray photoelectron spectroscopic studies of graphene devices for identification of doping. Applied Surface Science, 2017, 425, 1130-1137.	6.1	9
20	Optical and XPS evidence for the electrochemical generation of an N-heterocyclic carbene and its CS ₂ adduct from the ionic liquid [bmim][PF ₆]. New Journal of Chemistry, 2017, 41, 10299-10304.	2.8	22
21	Monitoring the operation of a graphene transistor in an integrated circuit by XPS. Organic Electronics, 2016, 37, 178-182.	2.6	7
22	XPS enables visualization of electrode potential screening in an ionic liquid medium with temporal-and lateral-resolution. Physical Chemistry Chemical Physics, 2016, 18, 28434-28440.	2.8	32
23	Location and Visualization of Working p-n and/or n-p Junctions by XPS. Scientific Reports, 2016, 6, 32482.	3.3	3
24	Chemical Visualization of a GaN p-n junction by XPS. Scientific Reports, 2015, 5, 14091.	3.3	8
25	XPS for probing the dynamics of surface voltage and photovoltage in GaN. Applied Surface Science, 2014, 323, 25-30.	6.1	13
26	Gate-Tunable Photoemission from Graphene Transistors. Nano Letters, 2014, 14, 2837-2842.	9.1	32
27	Tribological interaction between polytetrafluoroethylene and silicon oxide surfaces. Journal of Chemical Physics, 2014, 141, 164702.	3.0	6
28	Probing Voltage Drop Variations in Graphene with Photoelectron Spectroscopy. Analytical Chemistry, 2013, 85, 4172-4177.	6.5	15
29	XPS for chemical- and charge-sensitive analyses. Thin Solid Films, 2013, 534, 1-11.	1.8	46
30	Photoresponse of PbS nanoparticles–quaterthiophene films prepared by gaseous deposition as probed by XPS. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2012, 30, 04D109.	2.1	7
31	XPS investigation of a Si-diode in operation. Analytical Methods, 2012, 4, 3527.	2.7	13
32	XPS Investigation of a CdS-Based Photoresistor under Working Conditions: Operando–XPS. Analytical Chemistry, 2012, 84, 2990-2994.	6.5	31
33	Probing the Charge Buildâ€Up and Dissipation on Thin PMMA Film Surfaces at the Molecular Level by XPS. Angewandte Chemie - International Edition, 2012, 51, 5488-5492.	13.8	14
34	Synthesis, characterization and antibacterial investigation of silver–copper nanoalloys. Journal of Materials Chemistry, 2011, 21, 13150.	6.7	125
35	Transient surface photovoltage in n- and p-GaN as probed by x-ray photoelectron spectroscopy. Applied Physics Letters, $2011, 98, .$	3.3	35
36	XPS measurements for probing dynamics of charging. Journal of Electron Spectroscopy and Related Phenomena, 2010, 176, 52-57.	1.7	28

#	Article	IF	CITATIONS
37	Analysis of Fe nanoparticles using XPS measurements under d.c. or pulsedâ€voltage bias. Surface and Interface Analysis, 2010, 42, 859-862.	1.8	5
38	Photopatterning of PMMA Films with Gold Nanoparticles: Diffusion of AuCl ₄ ^{â^'} Ions. Journal of Physical Chemistry C, 2010, 114, 18401-18406.	3.1	13
39	Response of Polyelectrolyte Layers to the SiO ₂ Substrate Charging As Probed by XPS. Langmuir, 2009, 25, 1757-1760.	3.5	12
40	Morphology and optical properties of thin silica films containing bimetallic Ag/Au nanoparticles. Theoretical and Experimental Chemistry, 2008, 44, 356-361.	0.8	3
41	Electrical circuit modeling of surface structures for X-ray photoelectron spectroscopic measurements. Surface Science, 2008, 602, 365-368.	1.9	11
42	Charging/Discharging of Thin PS/PMMA Films As Probed by Dynamic X-ray Photoelectron Spectroscopy. Macromolecules, 2007, 40, 4109-4112.	4.8	19
43	Differentiation of Domains in Composite Surface Structures by Charge-Contrast X-ray Photoelectron Spectroscopy. Analytical Chemistry, 2007, 79, 183-186.	6.5	9
44	Heat-damage assessment of carbon-fiber-reinforced polymer composites by diffuse reflectance infrared spectroscopy. Journal of Applied Polymer Science, 2005, 96, 1222-1230.	2.6	19
45	XPS analysis with external bias: a simple method for probing differential charging. Surface and Interface Analysis, 2004, 36, 619-623.	1.8	24
46	Time-Resolved XPS Analysis of the SiO2/Si System in the Millisecond Range. Journal of Physical Chemistry B, 2004, 108, 5179-5181.	2.6	34
47	Differential Charging in SiO2/Si System As Determined by XPS. Journal of Physical Chemistry B, 2004, 108, 1515-1518.	2.6	60
48	Oxygen plasma modification of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) film surfaces for tissue engineering purposes. Journal of Applied Polymer Science, 2003, 87, 1285-1289.	2.6	39
49	XPS Studies of SiO2/Si System under External Bias. Journal of Physical Chemistry B, 2003, 107, 2939-2943.	2.6	101
50	Differential Charging in X-ray Photoelectron Spectroscopy:Â A Nuisance or a Useful Tool?. Analytical Chemistry, 2003, 75, 7026-7029.	6.5	73
51	Soft x-ray photoemission studies of the HfO2/SiO2/Si system. Applied Physics Letters, 2002, 80, 2135-2137.	3.3	157
52	Modification of polyolefins with silicone copolymers. I. Processing behavior and surface characterization of PP and HDPE blended with silicone copolymers. Journal of Applied Polymer Science, 2002, 83, 1625-1634.	2.6	25
53	UV-Induced Electrical and Optical Changes in PVC Blends. Monatshefte Fýr Chemie, 2001, 132, 185-192.	1.8	7
54	XPS and water contact angle measurements on aged and corona-treated PP. Journal of Applied Polymer Science, 1999, 74, 1846-1850.	2.6	50

#	Article	IF	CITATION
55	Spectroscopic Investigation of Onset and Enhancement of Electrical Conductivity in PVC/PANI Composites and Blends by Î ³ -ray or UV Irradiation. Journal of Physical Chemistry B, 1998, 102, 3902-3905.	2.6	32
56	Sorption of Cs+ and Ba2+ on Magnesite. Materials Research Society Symposia Proceedings, 1997, 506, 1079.	0.1	0
57	Surface Characterization of the Hydroxy-Terminated Poly(ε-caprolactone)/Poly(dimethylsiloxane) Triblock Copolymers by Electron Spectroscopy for Chemical Analysis and Contact Angle Measurements. Langmuir, 1997, 13, 5484-5493.	3.5	45
58	Electron spectroscopic investigations of CdS and CdTe electrochemically coated on glass. Analytical and Bioanalytical Chemistry, 1996, 355, 384-386.	3.7	2
59	X-ray photoelectron spectroscopic investigation of conducting polymer blends. Analytical and Bioanalytical Chemistry, 1996, 355, 387-389.	3.7	1
60	Electron spectroscopic investigation of Sn coatings on glasses. Analytical and Bioanalytical Chemistry, 1996, 355, 654-656.	3.7	24
61	IR and turbidity studies of vitamin E-cholesterol-phospholipid membrane interactions. Bioscience Reports, 1995, 15, 221-229.	2.4	25
62	Determination of electron affinity of phenyl radical by dissociative electron attachment technique. Organic Mass Spectrometry, 1993, 28, 285-286.	1.3	1