Blaz Zupan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5202853/publications.pdf

Version: 2024-02-01

81900 58581 7,569 109 39 82 citations h-index g-index papers 115 115 115 10057 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	iCLIP reveals the function of hnRNP particles in splicing at individual nucleotide resolution. Nature Structural and Molecular Biology, 2010, 17, 909-915.	8.2	1,026
2	Characterizing the RNA targets and position-dependent splicing regulation by TDP-43. Nature Neuroscience, 2011, 14, 452-458.	14.8	956
3	Predictive data mining in clinical medicine: Current issues and guidelines. International Journal of Medical Informatics, 2008, 77, 81-97.	3.3	653
4	From hype to reality: data science enabling personalized medicine. BMC Medicine, 2018, 16, 150.	5 . 5	278
5	Widespread binding of FUS along nascent RNA regulates alternative splicing in the brain. Scientific Reports, 2012, 2, 603.	3.3	231
6	iCLIP Predicts the Dual Splicing Effects of TIA-RNA Interactions. PLoS Biology, 2010, 8, e1000530.	5.6	226
7	Polymorphic Members of the lag Gene Family Mediate Kin Discrimination in Dictyostelium. Current Biology, 2009, 19, 567-572.	3.9	204
8	Analysis of alternative splicing associated with aging and neurodegeneration in the human brain. Genome Research, 2011, 21, 1572-1582.	5 . 5	199
9	Analysis of CLIP and iCLIP methods for nucleotide-resolution studies of protein-RNA interactions. Genome Biology, 2012, 13, R67.	9.6	195
10	Orange: From Experimental Machine Learning to Interactive Data Mining. Lecture Notes in Computer Science, 2004, , 537-539.	1.3	174
11	iCLIP - Transcriptome-wide Mapping of Protein-RNA Interactions with Individual Nucleotide Resolution. Journal of Visualized Experiments, 2011, , .	0.3	168
12	Data Fusion by Matrix Factorization. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37, 41-53.	13.9	166
13	Conserved developmental transcriptomes in evolutionarily divergent species. Genome Biology, 2010, 11, R35.	9.6	164
14	Microarray data mining with visual programming. Bioinformatics, 2005, 21, 396-398.	4.1	131
15	A comprehensive structural, biochemical and biological profiling of the human NUDIX hydrolase family. Nature Communications, 2017, 8, 1541.	12.8	124
16	Orthogonal matrix factorization enables integrative analysis of multiple RNA binding proteins. Bioinformatics, 2016, 32, 1527-1535.	4.1	108
17	Machine learning for survival analysis: a case study on recurrence of prostate cancer. Artificial Intelligence in Medicine, 2000, 20, 59-75.	6.5	107
18	Epistasis analysis with global transcriptional phenotypes. Nature Genetics, 2005, 37, 471-477.	21.4	100

#	Article	IF	CITATIONS
19	Discovering disease-disease associations by fusing systems-level molecular data. Scientific Reports, 2013, 3, 3202.	3.3	96
20	Crosslinking-immunoprecipitation (iCLIP) analysis reveals global regulatory roles of hnRNP L. RNA Biology, 2014, 11, 146-155.	3.1	82
21	miR669a and miR669q prevent skeletal muscle differentiation in postnatal cardiac progenitors. Journal of Cell Biology, 2011, 193, 1197-1212.	5.2	77
22	dictyBase—a Dictyostelium bioinformatics resource update. Nucleic Acids Research, 2009, 37, D515-D519.	14.5	71
23	Towards knowledge-based gene expression data mining. Journal of Biomedical Informatics, 2007, 40, 787-802.	4.3	70
24	VizRank: Data Visualization Guided by Machine Learning. Data Mining and Knowledge Discovery, 2006, 13, 119-136.	3.7	69
25	Bacterial Discrimination by Dictyostelid Amoebae Reveals the Complexity of Ancient Interspecies Interactions. Current Biology, 2013, 23, 862-872.	3.9	69
26	Applications of qualitative multi-attribute decision models in health care. International Journal of Medical Informatics, 2000, 58-59, 191-205.	3.3	67
27	Visualization-based cancer microarray data classification analysis. Bioinformatics, 2007, 23, 2147-2154.	4.1	67
28	Nomograms for Visualization of Naive Bayesian Classifier. Lecture Notes in Computer Science, 2004, , 337-348.	1.3	63
29	dictyExpress: a Dictyostelium discoideum gene expression database with an explorative data analysis web-based interface. BMC Bioinformatics, 2009, 10, 265.	2.6	63
30	Developmentally Regulated DNA Methylation in Dictyostelium discoideum. Eukaryotic Cell, 2006, 5, 18-25.	3.4	61
31	Leaps and Iulls in the developmental transcriptome of Dictyostelium discoideum. BMC Genomics, 2015, 16, 294.	2.8	61
32	VizRank: finding informative data projections in functional genomics by machine learning. Bioinformatics, 2005, 21, 413-414.	4.1	58
33	Learning by discovering concept hierarchies. Artificial Intelligence, 1999, 109, 211-242.	5.8	56
34	Nomograms for visualizing support vector machines. , 2005, , .		55
35	GenePath: a system for automated construction of genetic networks from mutant data. Bioinformatics, 2003, 19, 383-389.	4.1	54
36	FreeVizâ€"An intelligent multivariate visualization approach to explorative analysis of biomedical data. Journal of Biomedical Informatics, 2007, 40, 661-671.	4.3	54

#	Article	IF	CITATIONS
37	A function-decomposition method for development of hierarchical multi-attribute decision models. Decision Support Systems, 2004, 36, 215-233.	5.9	47
38	Assessment of Machine Learning Reliability Methods for Quantifying the Applicability Domain of QSAR Regression Models. Journal of Chemical Information and Modeling, 2014, 54, 431-441.	5.4	46
39	Democratized image analytics by visual programming through integration of deep models and small-scale machine learning. Nature Communications, 2019, 10, 4551.	12.8	44
40	Predictive model for survival at the conclusion of a damage control laparotomy. American Journal of Surgery, 2000, 180, 540-545.	1.8	42
41	Feature mining and predictive model construction from severe trauma patient's data. International Journal of Medical Informatics, 2001, 63, 41-50.	3.3	39
42	SNPsyn: detection and exploration of SNP–SNP interactions. Nucleic Acids Research, 2011, 39, W444-W449.	14.5	35
43	Gene network inference by fusing data from diverse distributions. Bioinformatics, 2015, 31, i230-i239.	4.1	34
44	Hands-on training about overfitting. PLoS Computational Biology, 2021, 17, e1008671.	3.2	34
45	dictyExpress: a web-based platform for sequence data management and analytics in Dictyostelium and beyond. BMC Bioinformatics, 2017, 18, 291.	2.6	29
46	Open-Source Tools for Data Mining. Clinics in Laboratory Medicine, 2008, 28, 37-54.	1.4	28
47	Computational approaches for the genetic and phenotypic characterization of a <i>Saccharomyces cerevisiae</i> wine yeast collection. Yeast, 2009, 26, 675-692.	1.7	25
48	Jumping across biomedical contexts using compressive data fusion. Bioinformatics, 2016, 32, i90-i100.	4.1	24
49	Gene discovery by chemical mutagenesis and whole-genome sequencing in <i>Dictyostelium</i> Genome Research, 2016, 26, 1268-1276.	5.5	23
50	Data Mining in Medicine. , 2009, , 1111-1136.		23
51	Optimization of rule-based systems using state space graphs. IEEE Transactions on Knowledge and Data Engineering, 1998, 10, 238-254.	5.7	22
52	TA-clustering: Cluster analysis of gene expression profiles through Temporal Abstractions. International Journal of Medical Informatics, 2005, 74, 505-517.	3.3	22
53	Gene Prioritization by Compressive Data Fusion and Chaining. PLoS Computational Biology, 2015, 11, e1004552.	3.2	22
54	GenePath: a system for inference of genetic networks and proposal of genetic experiments. Artificial Intelligence in Medicine, 2003, 29, 107-130.	6.5	21

#	Article	IF	CITATIONS
55	Computational Models for Prediction of Yeast Strain Potential for Winemaking from Phenotypic Profiles. PLoS ONE, 2013, 8, e66523.	2.5	21
56	Computational models reveal genotype–phenotype associations in <i>Saccharomyces cerevisiae</i> Veast, 2014, 31, 265-277.	1.7	20
57	Modelling impacts of cropping systems: Demands and solutions for DEX methodology. European Journal of Operational Research, 2008, 189, 594-608.	5.7	19
58	BzpF is a CREB-like transcription factor that regulates spore maturation and stability in Dictyostelium. Developmental Biology, 2011, 358, 137-146.	2.0	19
59	Stage prediction of embryonic stem cell differentiation from genome-wide expression data. Bioinformatics, 2011, 27, 2546-2553.	4.1	18
60	Transcriptional Profiling of Dictyostelium with RNA Sequencing. Methods in Molecular Biology, 2013, 983, 139-171.	0.9	17
61	Heterogeneous computing architecture for fast detection of SNP-SNP interactions. BMC Bioinformatics, 2014, 15, 216.	2.6	17
62	Seroprevalence of severe acute respiratory syndrome coronavirus 2 in Slovenia: results of two rounds of a nationwide population study on a probability-based sample, challenges and lessons learned. Clinical Microbiology and Infection, 2021, 27, 1039.e1-1039.e7.	6.0	17
63	proDEX – A DSS tool for environmental decision-making. Environmental Modelling and Software, 2006, 21, 1514-1516.	4.5	16
64	Knowledge-based data analysis and interpretation. Artificial Intelligence in Medicine, 2006, 37, 163-165.	6.5	16
65	OCT4 and the acquisition of oocyte developmental competence during folliculogenesis. International Journal of Developmental Biology, 2012, 56, 853-858.	0.6	16
66	GenePath: from mutations to genetic networks and back. Nucleic Acids Research, 2005, 33, W749-W752.	14.5	15
67	Subgroup discovery in data sets with multi-dimensional responses. Intelligent Data Analysis, 2011, 15, 533-549.	0.9	14
68	ABC Transporters in Dictyostelium discoideum Development. PLoS ONE, 2013, 8, e70040.	2.5	14
69	Matrix factorization-based data fusion for gene function prediction in baker's yeast and slime mold. Pacific Symposium on Biocomputing Pacific Symposium on Biocomputing, 2014, , 400-11.	0.7	14
70	Predictive Model for Estimating Risk of Crush Syndrome: A Data Mining Approach. Journal of Trauma, 2007, 62, 940-945.	2.3	13
71	Matrix factorization-based data fusion for drug-induced liver injury prediction. Systems Biomedicine (Austin, Tex), 2014, 2, 16-22.	0.7	13
72	COLLECTIVE PAIRWISE CLASSIFICATION FOR MULTI-WAY ANALYSIS OF DISEASE AND DRUG DATA. , 2016, , .		13

#	Article	IF	CITATIONS
73	Genome Sequence of a Lethal Strain of Xylem-Invading $\langle i \rangle$ Verticillium nonalfalfae $\langle i \rangle$. Genome Announcements, 2018, 6, .	0.8	13
74	Fast optimization of non-negative matrix tri-factorization. PLoS ONE, 2019, 14, e0217994.	2.5	12
75	Data Imputation in Epistatic MAPs by Network-Guided Matrix Completion. Journal of Computational Biology, 2015, 22, 595-608.	1.6	11
76	Transcriptional milestones in <i>Dictyostelium</i> development. Genome Research, 2021, 31, 1498-1511.	5.5	11
77	COLLECTIVE PAIRWISE CLASSIFICATION FOR MULTI-WAY ANALYSIS OF DISEASE AND DRUG DATA. Pacific Symposium on Biocomputing Pacific Symposium on Biocomputing, 2016, 21, 81-92.	0.7	11
78	New components of the Dictyostelium PKA pathway revealed by Bayesian analysis of expression data. BMC Bioinformatics, 2010, 11, 163.	2.6	10
79	Embedding to reference t-SNE space addresses batch effects in single-cell classification. Machine Learning, 2023, 112, 721-740.	5.4	10
80	Relating clinical and neurophysiological assessment of spasticity by machine learning. International Journal of Medical Informatics, 1998, 49, 243-251.	3.3	9
81	Data Mining in Medicine. , 2005, , 1107-1137.		9
82	Textual features for corpus visualization using correspondence analysis. Intelligent Data Analysis, 2009, 13, 795-813.	0.9	9
83	scOrange—a tool for hands-on training of concepts from single-cell data analytics. Bioinformatics, 2019, 35, i4-i12.	4.1	8
84	Machine Learning for Survival Analysis: A Case Study on Recurrence of Prostate Cancer. Lecture Notes in Computer Science, 1999, , 346-355.	1.3	8
85	Acquiring background knowledge for machine learning using function decomposition: a case study in rheumatology. Artificial Intelligence in Medicine, 1998, 14, 101-117.	6.5	7
86	Subgroup Discovery in Data Sets with Multi–dimensional Responses: A Method and a Case Study in Traumatology. Lecture Notes in Computer Science, 2009, , 265-274.	1.3	7
87	Scalable non-negative matrix tri-factorization. BioData Mining, 2017, 10, 41.	4.0	7
88	Supporting Regenerative Medicine by Integrative Dimensionality Reduction. Methods of Information in Medicine, 2012, 51, 341-347.	1.2	5
89	Discovery of Genetic Networks Through Abduction and Qualitative Simulation. Lecture Notes in Computer Science, 2007, , 228-247.	1.3	5
90	Does replication groups scoring reduce false positive rate in SNP interaction discovery?. BMC Genomics, 2010, 11, 58.	2.8	4

#	Article	IF	Citations
91	Embedding to Reference t-SNE Space Addresses Batch Effects in Single-Cell Classification. Lecture Notes in Computer Science, 2019, , 246-260.	1.3	4
92	Inference of the Molecular Mechanism of Action from Genetic Interaction and Gene Expression Data. OMICS A Journal of Integrative Biology, 2010, 14, 357-367.	2.0	3
93	Survival regression by data fusion. Systems Biomedicine (Austin, Tex), 2014, 2, 47-53.	0.7	3
94	Gene network inference by probabilistic scoring of relationships from a factorized model of interactions. Bioinformatics, 2014, 30, i246-i254.	4.1	3
95	On Quality of Different Annotation Sources for Gene Expression Analysis. Lecture Notes in Computer Science, 2009, , 421-425.	1.3	3
96	Rule-based Clustering for Gene Promoter Structure Discovery. Methods of Information in Medicine, 2009, 48, 229-235.	1.2	3
97	FragViz: visualization of fragmented networks. BMC Bioinformatics, 2010, 11, 475.	2.6	2
98	RICERCANDO: Data mining toolkit for mobile broadband measurements. Computer Networks, 2020, 177, 107294.	5.1	2
99	Simple and effective visual models for gene expression cancer diagnostics. , 2005, , .		1
100	Concurrent software architectures for exploratory data analysis. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2015, 5, 165-180.	6.8	1
101	Integrative Clustering by Nonnegative Matrix Factorization Can Reveal Coherent Functional Groups From Gene Profile Data. IEEE Journal of Biomedical and Health Informatics, 2015, 19, 698-708.	6.3	1
102	A Data Mining Library for miRNA Annotation and Analysis. Lecture Notes in Computer Science, 2011, , 80-84.	1.3	1
103	Ranking and 1-Dimensional Projection of Cell Development Transcription Profiles. Lecture Notes in Computer Science, 2011, , 85-89.	1.3	1
104	Knowledge-based bioinformatics for the study of mammalian oocytes. International Journal of Developmental Biology, 2012, 56, 859-866.	0.6	1
105	Predicting patient's long-term clinical status after hip arthroplasty using hierarchical decision modelling and data mining. Methods of Information in Medicine, 2001, 40, 25-31.	1.2	1
106	Bioinformatic approaches for the genetic and phenotypic characterization of a Saccharomyces cerevisiae wine yeast collection. Nature Precedings, 2008, , .	0.1	0
107	Finding Patterns in Class-Labeled Data Using Data Visualization. , 2008, , 106-123.		0
108	Data-Driven Revision of Decision Models. , 2009, , 617-623.		0

#	Article	IF	CITATIONS
109	Similarity of Transcription Profiles for Genes in Gene Sets. Lecture Notes in Computer Science, 2011, , 393-399.	1.3	O