289

papers

300

all docs

53794

17,840 45
citations h-index
300 300
docs citations times ranked

103

g-index

4968

citing authors

10

12

14

16

18

ARTICLE IF CITATIONS

Learning From Mistakes: Machine Learning Enhanced Human Expert Effort Estimates. IEEE Transactions
on Software Engineering, 2022, 48, 1868-1882.

Machine Learning Testing: Survey, Landscapes and Horizons. IEEE Transactions on Software 5.6 315
Engineering, 2022, 48, 1-36. :

A Survey of Performance Optimization for Mobile Applications. IEEE Transactions on Software
Engineering, 2022, 48, 2879-2904.

FAUSTA: Scaling Dynamic Analysis with Traffic Generation at WhatsApp. , 2022, , . 3

Improving machine translation systems via isotopic replacement. , 2022, , .

Comparative Analysis of Constraint Handling Techniques for Constrained Combinatorial Testing. IEEE

Transactions on Software Engineering, 2021, 47, 2549-2562. 5.6 10

An Empirical Validation of Oracle Improvement. IEEE Transactions on Software Engineering, 2021, 47,
1708-1728.

A Study of Bug Resolution Characteristics in Popular Programming Languages. I[EEE Transactions on 5.6 10
Software Engineering, 2021, 47, 2684-2697. :

App Store Effects on Software Engineering Practices. I[EEE Transactions on Software Engineering,
2021, 47, 300-319.

MuDelta: Delta-Oriented Mutation Testing at Commit Time. , 2021, , . 8

Testing Web Enabled Simulation at Scale Using Metamorphic Testing. , 2021, , .

Artifact for Enhancing Genetic Improvement of Software with Regression Test Selection. , 2021, . 1

"lgnorance and Prejudice" in Software Fairness. , 2021, , .

Enhancing Genetic Improvement of Software with Regression Test Selection. , 2021, , . 11

Facebookd€™s Cybera€“Cyber and Cybera€“Physical Digital Twins. , 2021, , .

Fairea: a model behaviour mutation approach to benchmarking bias mitigation methods. , 2021, , . 26

An Empirical Comparison of Combinatorial Testing, Random Testing and Adaptive Random Testing. [EEE

Transactions on Software Engineering, 2020, 46, 302-320.

Cost measures matter for mutation testing study validity. , 2020, , . 7

20

22

24

26

28

30

32

34

36

MARK HARMAN

ARTICLE IF CITATIONS

Automatic testing and improvement of machine translation. , 2020, , .

Ownership at Large. , 2020, , . 3

WES. , 2020, , .

Mutation Testing Advances: An Analysis and Survey. Advances in Computers, 2019, , 275-378. 1.6 239

Approximate Oracles and Synergy in Software Energy Search Spaces. IEEE Transactions on Software
Engineering, 2019, 45, 1150-1169.

Some challenges for software testing research (invited talk paper)., 2019, , . 5

The importance of accounting for real-world labelling when predicting software vulnerabilities. ,
2019,,.

SapFix: Automated End-to-End Repair at Scale. , 2019, , . 85

Predictive Mutation Testing. IEEE Transactions on Software Engineering, 2019, 45, 898-918.

Detecting Trivial Mutant Equivalences via Compiler Optimisations. IEEE Transactions on Software 5.6 60
Engineering, 2018, 44, 308-333. :

Specialising Software for Different Downstream Applications Using Genetic Improvement and Code
Transplantation. IEEE Transactions on Software Engineering, 2018, 44, 574-594.

Are mutants really natural?., 2018, , . 9

OASls: oracle assessment and improvement tool. , 2018, , .

Customer Rating Reactions Can Be Predicted Purely using App Features. , 2018, , . 31

Deploying Search Based Software Engineering with Sapienz at Facebook. Lecture Notes in Computer
Science, 2018, , 3-45.

We Need a Testability Transformation Semantics. Lecture Notes in Computer Science, 2018, , 3-17. 13 10

An Empirical Study of Meta- and Hyper-Heuristic Search for Multi-Objective Release Planning. ACM

Transactions on Software Engineering and Methodology, 2018, 27, 1-32.

Memory mutation testing. Information and Software Technology, 2017, 81, 97-111. 4.4 19

MARK HARMAN

ARTICLE IF CITATIONS

An experimental search-based approach to cohesion metric evaluation. Empirical Software

Engineering, 2017, 22, 292-329.

Adaptive Multi-Objective Evolutionary Algorithms for Overtime Planning in Software Projects. IEEE

38 Transactions on Software Engineering, 2017, 43, 898-917.

5.6 34

Inferring Automatic Test Oracles. , 2017, , .

Human Competitiveness of Genetic Programming in Spectrum-Based Fault Localisation. ACM

40 Transactions on Software Engineering and Methodology, 2017, 26, 1-30.

6.0 59

The Value of Exact Analysis in Requirements Selection. IEEE Transactions on Software Engineering,
2017, 43, 580-596.

42 Genetic improvement of GPU software. Genetic Programming and Evolvable Machines, 2017, 18, 5-44. 2.2 28

A survey of the use of crowdsourcing in software engineering. Journal of Systems and Software, 2017,
126, 57-84.

44 Generalized observational slicing for tree-represented modelling languages. , 2017, , . 14

Automated search for good coverage criteria. , 2016, , .

46 Comparing white-box and black-box test prioritization. , 2016, , . 117

Evaluation of estimation models using the Minimum Interval of Equivalence. Applied Soft Computing
Journal, 2016, 49, 956-967.

48 Threats to the validity of mutation-based test assessment. , 2016, , . 84

Sapienz: multi-objective automated testing for Android applications. , 2016, , .

50 Mutation-aware fault prediction. , 2016, , . 34

Test oracle assessment and improvement. , 2016, , .

52 An empirical study on dependence clusters for effort-aware fault-proneness prediction. , 2016, , . 23

API-Constrained Genetic Improvement. Lecture Notes in Computer Science, 2016, , 224-230.

HOMI: Searching Higher Order Mutants forASoftware Improvement. Lecture Notes in Computer Science,

5% 2016,,18-33.

1.3 8

MARK HARMAN

ARTICLE IF CITATIONS

Multi-objective software effort estimation. , 2016, , .

56 ORBS and the limits of static slicing. , 2015, , . 25

Introduction to the special issue on Mutation Testing. Software Testing Verification and Reliability,
2015, 25, 461-463.

An Integer Linear Programming approach to the single and bi-objective Next Release Problem.

58 Information and Software Technology, 2015, 65, 1-13.

4.4 53

Feature lifecycles as they spread, migrate, remain, and die in App Stores. , 2015, , .

Trivial Compiler Equivalence: A Large Scale Empirical Study of a Simple, Fast and Effective Equivalent

60 Mutant Detection Technique. , 2015, , .

81

Mutation testing of memory-related operators. , 2015, , .

62 Transformed Vargha-Delaney Effect Size. Lecture Notes in Computer Science, 2015, , 318-324. 13 24

Multi-objective Module Clustering for Kate. Lecture Notes in Computer Science, 2015, , 282-288.

64 The App Sampling Problem for App Store Mining. , 2015, , . 62

Learning Combinatorial Interaction Test Generation Strategies Using Hyperheuristic Search. , 2015, , .

Optimizing Existing Software With Genetic Programming. IEEE Transactions on Evolutionary

66 Computation, 2015, 19, 118-135. 10.0 147

The Oracle Problem in Software Testing: A Survey. IEEE Transactions on Software Engineering, 2015, 41,
507-525.

68 Achievements, Open Problems and Challenges for Search Based Software Testing. , 2015, , . 124

Gl4dGl. , 2015,, .

Practical Combinatorial Interaction Testing: Empirical Findings on Efficiency and Early Fault

70 Detection. IEEE Transactions on Software Engineering, 2015, 41, 901-924. 5.6 80

Combining Multi-Objective Search and Constraint Solving for Configuring Large Software Product

Lines., 2015,, .

72 Deep Parameter Optimisation. , 2015, , . 74

74

76

78

80

82

84

86

88

90

MARK HARMAN

ARTICLE IF CITATIONS

Reducing Energy Consumption Using Genetic Improvement. , 2015, , .

Empirical evaluation of pareto efficient multi-objective regression test case prioritisation. , 2015, , . 61

Improving CUDA DNA Analysis Software with Genetic Programming. , 2015, , .

Automated software transplantation. , 2015, , . 90

App store mining and analysis. , 2015, , .

Genetic Improvement using Higher Order Mutation. , 2015, , . 8

Grow and Graft a Better CUDA pknotsRG for RNA Pseudoknot Free Energy Calculation. , 2015, , .

Inferring Test Models from Kated€™s Bug Reports Using Multi-objective Search. Lecture Notes in

Computer Science, 2015, , 301-307. 1.3 10

Regression Test Case Prioritisation for Guava. Lecture Notes in Computer Science, 2015, , 221-227.

Automated Transplantation of Call Graph and Layout Features into Kate. Lecture Notes in Computer 13 17
Science, 2015, , 262-268. :

Genetic improvement for adaptive software engineering (keynote). , 2014, , .

Robust next release problem., 2014, , . 25

The plastic surgery hypothesis. , 2014, , .

Exact scalable sensitivity analysis for the next release problem. ACM Transactions on Software

Engineering and Methodology, 2014, 23, 1-31. 6.0 29

Coverage and fault detection of the output-uniqueness test selection criteria. , 2014, , .

Improving 3D medical image registration CUDA software with genetic programming. , 2014, , . 33

An analysis of the relationship between conditional entropy and failed error propagation in software

testing., 2014,, .

ORBS: language-independent program slicing. , 2014, , . 57

92

94

96

98

100

102

104

106

108

MARK HARMAN

ARTICLE IF CITATIONS

Angels and monsters. , 2014, , .

A study of equivalent and stubborn mutation operators using human analysis of equivalence. , 2014, , . 110

Search-Based Software Project Management. , 2014, , 373-399.

Equivalence hypothesis testing in experimental software engineering. Software Quality Journal, 2014, 9.9 6
22,215-238. ’

The executable experimental template pattern for the systematic comparison of metaheuristics. , 2014, ,

FITTEST: A new continuous and automated testing process for future Internet applications. , 2014, , . 7

Coherent clusters in source code. Journal of Systems and Software, 2014, 88, 1-24.

Less is More: Temporal Fault Predictive Performance over Multiple Hadoop Releases. Lecture Notes in

Computer Science, 2014, , 240-246. 1.3 24

Babel Pidgin: SBSE Can Grow and Graft Entirely New Functionality into a Real World System. Lecture
Notes in Computer Science, 2014, , 247-252.

Using Genetic Improvement and Code Transplants to Specialise a C++ Program to a Problem Class.

Lecture Notes in Computer Science, 2014, , 137-149. 1.3 88

Genetically Improved CUDA C++ Software. Lecture Notes in Computer Science, 2014, , 87-99.

The FITTEST Tool Suite for Testing Future Internet Applications. Lecture Notes in Computer Science,

2014, , 1-31. 1.3 1

The FITTEST Tool Suite for Testing Future Internet Applications. Lecture Notes in Computer Science,
2014,,1-31.

Testing and verification in serviced€eriented architecture: a survey. Software Testing Verification and 20 87
Reliability, 2013, 23, 261-313. ’

GPGPU test suite minimisation: search based software engineering performance improvement using
graphics cards. Empirical Software Engineering, 2013, 18, 550-593.

Foreword to the invited impact paper on automatic software repair. Software Quality Journal, 2013,
21,419-419. 22 0

Genetic programming for Reverse Engineering. , 2013, , .

Pricing crowdsourcing-based software development tasks. , 2013, , . 37

110

112

114

116

118

120

122

124

126

MARK HARMAN

ARTICLE IF CITATIONS

Dynamic adaptive Search Based Software Engineering needs fast approximate metrics (Reynote). , 2013, ,

Automated generation of state abstraction functions using data invariant inference. , 2013, , . 4

Amorphous Slicing of Extended Finite State Machines. IEEE Transactions on Software Engineering,
2013, 39, 892-909.

Editorial for special issue of STVR on software testing, verification, and validation - volume 2
(extended selected papers from ICST 2011). Software Testing Verification and Reliability, 2013, 23, 2.0 0
529-529.

Not going to take this anymore: Multi-objective overtime planning for Software Engineering projects.
,2013,,.

Empirical evaluation of search based requirements interaction management. Information and

Software Technology, 2013, 55, 126-152. 44 48

AUSTIN: An open source tool for search based software testing of C programs. Information and
Software Technology, 2013, 55, 112-125.

Cloud engineering is Search Based Software Engineering too. Journal of Systems and Software, 2013, 45 a7
86, 2225-2241.)

An orchestrated survey of methodologies for automated software test case generation. Journal of
Systems and Software, 2013, 86, 1978-2001.

Searching for better configurations: a rigorous approach to clone evaluation. , 2013, , . 109

Empirical answers to fundamental software engineering problems (panel). , 2013, , .

Efficient Identification of Linchpin Vertices in Dependence Clusters. ACM Transactions on

Programming Languages and Systems, 2013, 35, 1-35. 21 2

State-based model slicing. ACM Computing Surveys, 2013, 45, 1-36.

Efficiency and early fault detection with lower and higher strength combinatorial interaction

testing., 2013,,. 71

Fault localization prioritization. ACM Transactions on Software Engineering and Methodology, 2013,
22,1-29.

Editorial for special issue of STVR on software testing, verification, and validation 4€wolume 1
(extended selected papers from ICST 2011). Software Testing Verification and Reliability, 2013, 23, 2.0 0
437-437.

1st International workshop on combining modelling and search-based software engineering (CMSBSE) Tj ETQq1 1 0.784314 ygBT O

Provably Optimal and Human-Competitive Results in SBSE for Spectrum Based Fault Localisation.
Lecture Notes in Computer Science, 2013, , 224-238.

1.3 60

128

130

132

134

136

138

140

142

144

MARK HARMAN

ARTICLE IF CITATIONS

Applying Genetic Improvement to MiniSAT. Lecture Notes in Computer Science, 2013, , 257-262.

Using Genetic Algorithms to Search for Key Stakeholders in Large-Scale Software Projects. , 2013, ,
118-134.

Agent-Based Modelling of Stock Markets Using Existing Order Book Data. Lecture Notes in Computer
Science, 2013, , 101-114.

The GISMOE challenge: constructing the pareto program surface using genetic programming to find

better programs (keynote paper)., 2012, , . 7

Search-based software engineering. ACM Computing Surveys, 2012, 45, 1-61.

Finding the Optimal Balance between Over and Under Approximation of Models Inferred from

Execution Logs. , 2012, . 20

Crawlability Metrics for Web Applications. , 2012, , .

Overview of TASE 2012 Talk on Search Based Software Engineering. , 2012, , . 0

Search Based Software Engineering: Techniques, Taxonomy, Tutorial. Lecture Notes in Computer
Science, 2012, , 1-59.

Augmenting test suites effectiveness by increasing output diversity. , 2012, , . 22

Dynamic adaptive search based software engineering. , 2012, , .

App store mining and analysis: MSR for app stores. , 2012, , . 193

Experimental assessment of software metrics using automated refactoring. , 2012, , .

The role of Artificial Intelligence in Software Engineering. , 2012, , . 56

Regression testing minimization, selection and prioritization: a survey. Software Testing Verification
and Reliability, 2012, 22, 67-120.

Test data regeneration: generating new test data from existing test data. Software Testing 2.0 35
Verification and Reliability, 2012, 22, 171-201. ’

Regression test suite prioritization using system models. Software Testing Verification and Reliability,

2012, 22, 481-506.

Evolutionary testing of autonomous software agents. Autonomous Agents and Multi-Agent Systems,

2012, 25, 260-283. 21 49

MARK HARMAN

ARTICLE IF CITATIONS

Input Domain Reduction through Irrelevant Variable Removal and Its Effect on Local, Global, and

Hybrid Search-Based Structural Test Data Generation. IEEE Transactions on Software Engineering,
2012, 38, 453-477.

Optimised Realistic Test Input Generation Using Web Services. Lecture Notes in Computer Science, 2012,
146 105-120. 1.3 2

Refactoring as Testability Transformation. , 2011, , .

148 Future Internet Testing with FITTEST., 2011, , . 5

Automated web application testing using search based software engineering. , 2011, , .

150 Automatically generating realistic test input from web services. , 2011, , . 29

Symbolic search-based testing. , 2011, , .

152 A unifying theory of control dependence and its application to arbitrary program structures. 0.9 29
Theoretical Computer Science, 2011, 412, 6809-6842. :

Software Engineering Meets Evolutionary Computation. Computer, 2011, 44, 31-39.

154 Software Module Clustering as a Multi-Objective Search Problem. IEEE Transactions on Software 56 288
Engineering, 2011, 37, 264-282. :

An Analysis and Survey of the Development of Mutation Testing. IEEE Transactions on Software
Engineering, 2011, 37, 649-678.

156 A study of the bi-objective next release problem. Empirical Software Engineering, 2011, 16, 29-60. 3.9 61

Crawlability metrics for automated web testing. International Journal on Software Tools for
Technology Transfer, 2011, 13, 131-149.

The use of searchd€based optimization techniques to schedule and staff software projects: an approach

158 andan empirical study. Software - Practice and Experience, 2011, 41, 495-519.

3.6 50

Comparing the performance of metaheuristics for the analysis of multi-stakeholder tradeoffs in
requirements optimisation. Information and Software Technology, 2011, 53, 761-773.

160 Model projection. , 2011, , . 19

Transition coverage testing for simulink/stateflow models using messy genetic algorithms. , 2011, , .

162 Strong higher order mutation-based test data generation. , 2011, , . 104

10

MARK HARMAN

ARTICLE IF CITATIONS

Making the Case for MORTO: Multi Objective Regression Test Optimization., 2011, , .

164 FlagRemover. ACM Transactions on Software Engineering and Methodology, 2011, 20, 1-33. 6.0 30

Cooperative Co-evolutionary Optimization of Software Project Staff Assignments and Job Scheduling.
Lecture Notes in Computer Science, 2011, , 127-141.

Highly Scalable Multi Objective Test Suite Minimisation Using Graphics Cards. Lecture Notes in

166 Computer Science, 2011, , 219-236. 1.3 44

An alternative characterization of weak order dependence. Information Processing Letters, 2010, 110,
939-943.

Assessing the impact of global variables on program dependence and dependence clusters. Journal of

168 5ystems and Software, 2010, 83, 96-107.

4.5 20

Using hybrid algorithm for Pareto efficient multi-objective test suite minimisation. Journal of Systems
and Software, 2010, 83, 689-701.

170 An empirical investigation into branch coverage for C programs using CUTE and AUSTIN. Journal of 45 50
Systems and Software, 2010, 83, 2379-2391. :

Efficient multi-objective higher order mutation testing with genetic programming. Journal of Systems
and Software, 2010, 83, 2416-2430.

179 Estimating the feasibility of transition paths inAextended finite state machines. Automated Software 9.9 33
Engineering, 2010, 17, 33-56. :

A Theoretical and Empirical Study of Search-Based Testing: Local, Global, and Hybrid Search. IEEE
Transactions on Software Engineering, 2010, 36, 226-247.

A trajectory-based strict semantics for program slicing. Theoretical Computer Science, 2010, 411,

174 1372.1386.

0.9 19

A Manifesto for Higher Order Mutation Testing. , 2010, , .

176 Automated patching techniques. Communications of the ACM, 2010, 53, 108-108. 4.5 24

The relationship between search based software engineering and predictive modeling. , 2010, , .

178 Coherent dependence clusters. , 2010, , . 6

Issues in clone classification for dataflow languages. , 2010, , .

180 Today/future importance analysis. , 2010, , . 17

11

MARK HARMAN

ARTICLE IF CITATIONS

Optimizing for the Number of Tests Generated in Search Based Test Data Generation with an

Application to the Oracle Cost Problem. , 2010, , .

Search Based Software Engineering: Introduction to the Special Issue of the [EEE Transactions on

182 Software Engineering. IEEE Transactions on Software Engineering, 2010, 36, 737-741.

5.6 29

AUSTIN: A Tool for Search Based Software Testing for the C Language and Its Evaluation on Deployed
Automotive Systems. , 2010, , .

184 Empirical Study on the Efficiency of Search Based Test Generation for EFSM Models. , 2010, , . 19

Search Based Optimization of Requirements Interaction Management. , 2010, , .

186 Reducing qualitative human oracle costs associated with automatically generated test data. , 2010, , . 38

Why Source Code Analysis and Manipulation Will Always be Important. , 2010, , .

Why the Virtual Nature of Software Makes It Ideal for Search Based Optimization. Lecture Notes in

188 Computer Science, 2010, , 1-12.

1.3 27

Multi objective higher order mutation testing with GP. , 2009, , .

1 Dependence clusters in source code. ACM Transactions on Programming Languages and Systems, 2009,
90 357133 2.1 39

Automated test data generation for aspect-oriented programs. , 2009, , .

A search based approach to fairness analysis in requirement assignments to aid negotiation, mediation

192 and decision making. Requirements Engineering, 2009, 14, 231-245.

3.1 83

TAIC PART 2007 and Mutation 2007 special issue editorial. Journal of Systems and Software, 2009, 82,
1753-1754.

194 Higher Order Mutation Testing. Information and Software Technology, 2009, 51, 1379-1393. 4.4 216

Empirical evaluation of a nesting testabili‘gv transformation for evolutionary testing. ACM
Transactions on Software Engineering and Methodology, 2009, 18, 1-27.

196 Automated Test Data Generation for Coverage: Haven't We Solved This Problem Yet?., 2009, , . 53

Search based data sensitivity analysis applied to requirement engineering. , 2009, , .

198 Multi Objective Higher Order Mutation Testing with Genetic Programming. , 2009, , . 30

12

MARK HARMAN

ARTICLE IF CITATIONS

Clustering test cases to achieve effective and scalable prioritisation incorporating expert knowledge.

,2009,, .

Software project planning for robustness and completion time in the presence of uncertainty using

200tk objective search based software engineering. , 2009, , .

50

Using formal specifications to support testing. ACM Computing Surveys, 2009, 41, 1-76.

202 Improving Web Application Testing using testability measures. , 2009, , . 4

Identifying 'Linchpin Vertices' That Cause Large Dependence Clusters. , 2009, , .

204 Atheoretical and empirical study of EFSM dependence. , 2009, , . 26

Measuring and Improving Latency to Avoid Test Suite Wear Out. , 2009, , .

Control Dependence for Extended Finite State Machines. Lecture Notes in Computer Science, 2009, ,
206 216-230. 1.3 36

An emFirical study of the relationship between the concepts expressed in source code and dependence.
Journal of Systems and Software, 2008, 81, 2287-2298.

208 Special Issue on Searcha€Based Software Maintenance. Journal of Software: Evolution and Process, 11 o
2008, 20, 317-319.)

Editorial: Testing practice and research. Software Testing Verification and Reliability, 2008, 18, 69-70.

010 Locating dependence structures using search-based slicing. Information and Software Technology, aa 8
2008, 50, 1189-1209. ’

Constructing Subtle Faults Using Higher Order Mutation Testing. , 2008, , .

212 &#147;Fairness Analysis&#148; in Requirements Assignments. , 2008, , . 36

Evaluating Key Statements Analysis. , 2008, , .

214 Analysis of Procedure Splitability. , 2008, , . 6

Automated Session Data Repair for Web Application Regression Testing. , 2008, , .

o1 MILU: A Customizable, Runtime-Optimized Higher Order Mutation Testing Tool for the Full C Language.
° 2008, 108

13

218

220

222

224

226

228

230

232

234

14

MARK HARMAN

ARTICLE IF CITATIONS

Handling dynamic data structures in search based testing. , 2008, , .

Dependence Anti Patterns. , 2008, , . 16

Search Based Requirements Optimisation: Existing Work and Challenges. , 2008, , 88-94.

Testability Transformation 4€“ Program Transformation to Improve Testability. , 2008, , 320-344. 23

Pareto efficient multi-objective test case selection., 2007, , .

An empirical study of static program slice size. ACM Transactions on Software Engineering and 6.0 7
Methodology, 2007, 16, 8.)

Empirical study of optimization techniques for massive slicing. ACM Transactions on Programming
Languages and Systems, 2007, 30, 3.

Search Algorithms for Regression Test Case Prioritization. [EEE Transactions on Software 5.6 -
Engineering, 2007, 33, 225-237. :

Pareto optimal search based refactoring at the design level. , 2007, , .

Atheoretical & empirical analysis of evolutionary testing and hill climbing for structural test

data generation., 2007, ,. 66

The impact of input domain reduction on search-based test data generation. , 2007, , .

The Effect of Communication Overhead on Software Maintenance Project Staffing: a Search-Based

Approach., 2007, , . 22

Search Based Software Engineering for Program Comprehension. , 2007, , .

Automated Test Data Generation using Search Based Software Engineering. , 2007, , . 26

The Current State and Future of Search Based Software Engineering. , 2007, , .

A multi-objective approach to search-based test data generation. , 2007, , . 93

The multi-objective next release problem., 2007, , .

Heuristics for fault diagnosis when testing from finite state machines. Software Testing Verification 20 9
and Reliability, 2007, 17, 41-57. ’

236

238

240

242

244

246

248

250

252

15

MARK HARMAN

ARTICLE IF CITATIONS

A non-standard semantics for program slicing and dependence analysis. The Journal of Logic and

Algebraic Programming, 2007, 72, 191-206.

Equivalence of linear, free, liberal, structured program schemas is decidable in polynomial time.

Theoretical Computer Science, 2007, 373, 1-18. 0.9 6

Characterising, Explaining, and Exploiting the Approximate Nature of Static Analysis through
Animation. , 2006, , .

Allowing Overlapping Boundaries in Source Code using a Search Based Approach to Concept Binding. , 16
2006, , .

Workshop Introduction Astrenet Aspect Analysis. , 2006, , .

Stop-List Slicing. , 20086, , . 6

An Empirical Study of Executable Concept Slice Size. , 2006, , .

Tool-Supported Refactoring of Existing Object-Oriented Code into Aspects. IEEE Transactions on 5.6 56
Software Engineering, 2006, 32, 698-717. :

Search Based Approaches to Component Selection and Prioritization for the Next Release Problem.
Conference on Software Maintenance, Proceedings of the, 2006, , .

Search-based approaches to the component selection and prioritization problem. , 2006, , . 13

The species per path approach to SearchBased test data generation. , 2006, , .

Theory and algorithms for slicing unstructured programs. Information and Software Technology, 44 17
2006, 48, 549-565. ’

Improving test quality using robust unique input/output circuit sequences (UIOCs). Information and
Software Technology, 2006, 48, 696-707.

Selected papers from the fourth Source Code Analysis and Manipulation (SCAM 2004) Workshop. 45 1
Journal of Systems and Software, 2006, 79, 1217-1218. :

A formalisation of the relationship between forms of program slicing. Science of Computer
Programming, 2006, 62, 228-252.

A formal relationship between program slicing and partial evaluation. Formal Aspects of Computing, L8 ;
2006, 18, 103-119. ’

Theoretical foundations of dynamic program slicing. Theoretical Computer Science, 2006, 360, 23-41.

Search Based Software Engineering. Lecture Notes in Computer Science, 2006, , 740-747. 1.3 8

254

256

258

260

262

264

266

268

270

16

MARK HARMAN

ARTICLE IF CITATIONS

ConSUS: a light-weight program conditioner. Journal of Systems and Software, 2005, 77, 241-262.

Unifying program slicing and concept assignment for higher-level executable source code extraction.

Software - Practice and Experience, 2005, 35, 977-1006. 3.6 14

Automated Unique Input Output Sequence Generation for Conformance Testing of FSMs. Computer
Journal, 2005, 49, 331-344.

Generating feasible input sequences for extended finite state machines (EFSMs) using genetic

algorithms. , 2005, , . 1

An empirical study of the robustness of two module clustering fitness functions. , 2005, , .

Static Program Slicing Algorithms are Minimal for Free Liberal Program Schemas. Computer Journal,

2005, 48, 737-748. 2.4 14

Branch-Coverage Testability Transformation for Unstructured Programs. Computer Journal, 2005, 48,
421-436.

Guest Editorial: Special Issue on Software Maintenance and Evolution. IEEE Transactions on Software 5.6 1
Engineering, 2005, 31, 801-803. :

A Survey of Empirical Results on Program Slicing. Advances in Computers, 2004, 62, 105-178.

Evolutionary testing in the presence of loop-assigned flags. , 2004, , . 63

Syntax-Directed Amorphous Slicing. Automated Software Engineering, 2004, 11, 27-61.

CONSIT: a fully automated conditioned program slicer. Software - Practice and Experience, 2004, 34,

15-46. 3.6 23

Testability transformation. IEEE Transactions on Software Engineering, 2004, 30, 3-16.

Analysis and visualization of predicate dependence on formal parameters and global variables. IEEE

Transactions on Software Engineering, 2004, 30, 715-735. 5.6 26

How to Overcome the Equivalent Mutant Problem and Achieve Tailored Selective Mutation Using
Co-evolution. Lecture Notes in Computer Science, 2004, , 1338-1349.

Evolutionary testing in the presence of loop-assigned flags. Software Engineering Notes: an Informal

Newsletter of the Special Interest Committee on Software Engineering | ACM, 2004, 29, 108-118. 0-7 17

Input Sequence Generation for Testing of Communicating Finite State Machines (CFSMs). Lecture

Notes in Computer Science, 2004, , 1429-1430.

Amorphous program slicing. Journal of Systems and Software, 2003, 68, 45-64. 4.5 83

MARK HARMAN

ARTICLE IF CITATIONS

Equivalence of conservative, free, linear program schemas is decidable. Theoretical Computer Science,

2003, 290, 831-862.

Guaranteed inconsistency avoidance during software evolution. Journal of Software: Evolution and

272 process, 2003, 15, 393-416. 11 5

An empirical investigation of the influence of a type of side effects on program comprehension. [EEE
Transactions on Software Engineering, 2003, 29, 665-670.

274 Search Based Transformations. Lecture Notes in Computer Science, 2003, , 2511-2512. 1.3 12

Source code analysis and manipulation. Information and Software Technology, 2002, 44, 717-720.

Conditioned slicing supports partition testing. Software Testing Verification and Reliability, 2002, 12,

276 5378,

2.0 40

Search-based software engineering. Information and Software Technology, 2001, 43, 833-839.

978 Software engineering using metaheuristic innovative algorithms: workshop report. Information and a4 15
Software Technology, 2001, 43, 905-907. :

An overview of program slicing. Software Focus, 2001, 2, 85-92.

The SEMINAL workshop. Software Engineering Notes: an Informal Newsletter of the Special Interest

280 Committee on Software Engineering | ACM, 2001, 26, 62-66. 0.7 12

The Relationship Between Program Dependence and Mutation Analysis. , 2001, , 5-13.

282 Espresso., 2000, , . 9

Using program slicing to assist in the detection of equivalent mutants. , 1999, 9, 233-262.

A new algorithm for slicing unstructured programs. Journal of Software: Evolution and Process,

284 1998, 10, 415-441.

0.4 28

A new algorithm for slicing unstructured programs. , 1998, 10, 415.

286 Slicing programs in the presence of errors. Formal Aspects of Computing, 1996, 8, 490-497. 18 1

A parallel algorithm for static program slicing. Information Processing Letters, 1995, 56, 307-313.

288 Using program slicing to simplify testing. Software Testing Verification and Reliability, 1995, 5, 143-162. 2.0 78

17

MARK HARMAN

ARTICLE IF CITATIONS

Testing of Future Internet Applications Running in the Cloud. Advances in Computer and Electrical

289 Engineering BooR Series, 0, , 305-321.

18

