
Koji Eto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5202405/publications.pdf Version: 2024-02-01

Κομ Ετο

#	Article	IF	CITATIONS
1	CD8+ effector T cells contribute to macrophage recruitment and adipose tissue inflammation in obesity. Nature Medicine, 2009, 15, 914-920.	30.7	1,887
2	Generation of Rejuvenated Antigen-Specific T Cells by Reprogramming to Pluripotency and Redifferentiation. Cell Stem Cell, 2013, 12, 114-126.	11.1	327
3	Transient activation of <i>c-MYC</i> expression is critical for efficient platelet generation from human induced pluripotent stem cells. Journal of Experimental Medicine, 2010, 207, 2817-2830.	8.5	295
4	Generation of functional platelets from human embryonic stem cells in vitro via ES-sacs, VEGF-promoted structures that concentrate hematopoietic progenitors. Blood, 2008, 111, 5298-5306.	1.4	282
5	Donor-dependent variations in hepatic differentiation from human-induced pluripotent stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 12538-12543.	7.1	277
6	Expandable Megakaryocyte Cell Lines Enable Clinically Applicable Generation of Platelets from Human Induced Pluripotent Stem Cells. Cell Stem Cell, 2014, 14, 535-548.	11.1	275
7	Turbulence Activates Platelet Biogenesis to Enable Clinical Scale ExÂVivo Production. Cell, 2018, 174, 636-648.e18.	28.9	218
8	IL-1α induces thrombopoiesis through megakaryocyte rupture in response to acute platelet needs. Journal of Cell Biology, 2015, 209, 453-466.	5.2	213
9	Megakaryocytes derived from embryonic stem cells implicate CalDAG-GEFI in integrin signaling. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 12819-12824.	7.1	189
10	Functional Classification of ADAMs Based on a Conserved Motif for Binding to Integrin α9β1. Journal of Biological Chemistry, 2002, 277, 17804-17810.	3.4	142
11	Two differential flows in a bioreactor promoted platelet generation from human pluripotent stem cell–derived megakaryocytes. Experimental Hematology, 2013, 41, 742-748.	0.4	90
12	Heterozygous ITGA2B R995W mutation inducing constitutive activation of the αIIbβ3 receptor affects proplatelet formation and causes congenital macrothrombocytopenia. Blood, 2011, 117, 5479-5484.	1.4	85
13	Lnk regulates integrin αIIbβ3 outside-in signaling in mouse platelets, leading to stabilization of thrombus development in vivo. Journal of Clinical Investigation, 2010, 120, 179-190.	8.2	84
14	Immortalization of Erythroblasts by c-MYC and BCL-XL Enables Large-Scale Erythrocyte Production from Human Pluripotent Stem Cells. Stem Cell Reports, 2013, 1, 499-508.	4.8	72
15	In vivo imaging visualizes discoid platelet aggregations without endothelium disruption and implicates contribution of inflammatory cytokine and integrin signaling. Blood, 2012, 119, e45-e56.	1.4	71
16	Metalloproteinase regulation improves in vitro generation of efficacious platelets from mouse embryonic stem cells. Journal of Experimental Medicine, 2008, 205, 1917-1927.	8.5	62
17	Linkage between the mechanisms of thrombocytopenia and thrombopoiesis. Blood, 2016, 127, 1234-1241.	1.4	60
18	iPSC-Derived Platelets Depleted of HLA Class I Are Inert to Anti-HLA Class I and Natural Killer Cell Immunity. Stem Cell Reports, 2020, 14, 49-59.	4.8	57

Којі Ето

#	Article	IF	CITATIONS
19	Congenital amegakaryocytic thrombocytopenia iPS cells exhibit defective MPL-mediated signaling. Journal of Clinical Investigation, 2013, 123, 3802-3814.	8.2	57
20	In Vitro Generation of Megakaryocytes and Platelets from Human Embryonic Stem Cells and Induced Pluripotent Stem Cells. Methods in Molecular Biology, 2012, 788, 205-217.	0.9	47
21	The WAVE2/Abi1 complex differentially regulates megakaryocyte development and spreading: implications for platelet biogenesis and spreading machinery. Blood, 2007, 110, 3637-3647.	1.4	42
22	Growth and maturation of megakaryocytes is regulated by Lnk/Sh2b3 adaptor protein through crosstalk between cytokine- and integrin-mediated signals. Experimental Hematology, 2008, 36, 897-906.	0.4	40
23	Selective Inhibition of ADAM17 Efficiently Mediates Glycoprotein Ibα Retention During Ex Vivo Generation of Human Induced Pluripotent Stem Cell-Derived Platelets. Stem Cells Translational Medicine, 2017, 6, 720-730.	3.3	39
24	Tyrosyl-tRNA synthetase stimulates thrombopoietin-independent hematopoiesis accelerating recovery from thrombocytopenia. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E8228-E8235.	7.1	36
25	Pluripotent stem cells reveal the developmental biology of human megakaryocytes and provide a source of platelets for clinical application. Cellular and Molecular Life Sciences, 2012, 69, 3419-3428.	5.4	33
26	De Novo Mutations Activating Germline TP53 in an Inherited Bone-Marrow-Failure Syndrome. American Journal of Human Genetics, 2018, 103, 440-447.	6.2	33
27	SHARPIN at the nexus of integrin, immune, and inflammatory signaling in human platelets. Proceedings of the United States of America, 2019, 116, 4983-4988.	7.1	23
28	A β1-tubulin–based megakaryocyte maturation reporter system identifies novel drugs that promote platelet production. Blood Advances, 2018, 2, 2262-2272.	5.2	23
29	Epigenetic traits inscribed in chromatin accessibility in aged hematopoietic stem cells. Nature Communications, 2022, 13, 2691.	12.8	22
30	Development and Analysis of Megakaryocytes from Murine Embryonic Stem Cells. Methods in Enzymology, 2003, 365, 142-158.	1.0	21
31	Multicolor Staining of Globin Subtypes Reveals Impaired Globin Switching During Erythropoiesis in Human Pluripotent Stem Cells. Stem Cells Translational Medicine, 2014, 3, 792-800.	3.3	21
32	Novel TPO receptor agonist TA-316 contributes to platelet biogenesis from human iPS cells. Blood Advances, 2017, 1, 468-476.	5.2	19
33	Skewed megakaryopoiesis in human induced pluripotent stemÂcellâ€derived haematopoietic progenitor cells harbouring calreticulin mutations. British Journal of Haematology, 2018, 181, 791-802.	2.5	19
34	The endoplasmic reticulum protein SEC22B interacts with NBEAL2 and is required for megakaryocyte α-granule biogenesis. Blood, 2020, 136, 715-725.	1.4	16
35	Ex vivo generation of platelet products from human iPS cells. Inflammation and Regeneration, 2020, 40, 30.	3.7	15
36	Generation and manipulation of human iPSC-derived platelets. Cellular and Molecular Life Sciences, 2021, 78, 3385-3401.	5.4	15

Којі Ето

#	Article	IF	CITATIONS
37	Refined methods to evaluate the in vivo hemostatic function and viability of transfused human platelets in rabbit models. Transfusion, 2017, 57, 2035-2044.	1.6	13
38	Illustrated Stateâ€ofâ€theâ€Art Capsules of the ISTH 2019 Congress in Melbourne, Australia. Research and Practice in Thrombosis and Haemostasis, 2019, 3, 431-497.	2.3	11
39	The Cxxc1 subunit of the Trithorax complex directs epigenetic licensing of CD4+ T cell differentiation. Journal of Experimental Medicine, 2021, 218, .	8.5	10
40	Generation of disease-specific and CRISPR/Cas9-mediated gene-corrected iPS cells from a patient with adult progeria Werner syndrome. Stem Cell Research, 2021, 53, 102360.	0.7	8
41	Silencing of p53 and CDKN1A establishes sustainable immortalized megakaryocyte progenitor cells from human iPSCs. Stem Cell Reports, 2021, , .	4.8	7
42	Development of platelet replacement therapy using human induced pluripotent stem cells. Development Growth and Differentiation, 2021, 63, 178-186.	1.5	6
43	Extracellular laminin regulates hematopoietic potential of pluripotent stem cells through integrin β1-ILK-β-catenin-JUN axis. Stem Cell Research, 2021, 53, 102287.	0.7	6
44	The First-in-Human Clinical Trial of iPSC-Derived Platelets (iPLAT1): Autologous Transfusion to an Aplastic Anemia Patient with Alloimmune Platelet Transfusion Refractoriness. Blood, 2021, 138, 351-351.	1.4	6
45	Suppressive effects of anagrelide on cell cycle progression and the maturation of megakaryocyte progenitor cell lines in human induced pluripotent stem cells. Haematologica, 2020, 105, e216-e220.	3.5	4
46	Microfluidic Bioreactor Made of Cyclo-Olefin Polymer for Observing On-Chip Platelet Production. Micromachines, 2021, 12, 1253.	2.9	4
47	Combined transcriptome and proteome profiling of SRC kinase activity in healthy and E527K defective megakaryocytes. Haematologica, 2021, 106, 3206-3210.	3.5	3
48	Platelet biogenesis wears silkworm cocoons. Blood, 2015, 125, 2181-2182.	1.4	2
49	Stem Cell-Derived Platelets. , 2019, , 1173-1189.		2
50	Generating Blood from iPS Cells. , 2016, , 399-420.		1
51	αIIbβ3 changes gears in MKs and platelets. Blood, 2019, 133, 1700-1701.	1.4	1
52	Three-dimensional microchannel reflecting cell size distribution for on-chip production of platelet-like particles. Microfluidics and Nanofluidics, 2021, 25, 1.	2.2	1
53	The Effect of Megakaryocytes and Platelets Derived from Human-Induced Pluripotent Stem Cells on Bone Formation. Spine Surgery and Related Research, 2021, 5, 196-204.	0.7	1
54	Cancellation of c-MYC Silencing in Human Induced Pluripotent Stem Cells Contributes to the Efficient in Vitro Production of Platelets with the Ability of Hemostasis In Vivo Blood, 2009, 114, 1488-1488.	1.4	1

Којі Ето

#	Article	IF	CITATIONS
55	Platelets using iPS cell technology; large scale manufacturing. Journal of Stem Cells and Regenerative Medicine, 2019, 15, 52.	2.2	1
56	Revised "hPSC-Sac Method―for Simple and Efficient Differentiation of Human Pluripotent Stem Cells to Hematopoietic Progenitor Cells. Methods in Molecular Biology, 2021, , 1.	0.9	1
57	Adipose Tissue Remodeling, Chronic Inflammation and T-cell-macrophage Interactions in Obesity Visualized by in vivo Molecular Imaging Method. Inflammation Research, 2009, 58, S234-S238.	4.0	0
58	Guest editorial: The contribution of pluripotent stem cells to blood cells. International Journal of Hematology, 2012, 95, 599-600.	1.6	0
59	On-chip monitoring of megakaryocytes in shear flow environment. , 2015, , .		0
60	Hematopoietic stem cells to megakaryopoiesis. Japanese Journal of Thrombosis and Hemostasis, 2016, 27, 519-525.	0.1	0
61	A design strategy of a bioreactor for platelet production using fluid force. , 2017, , .		0
62	Negative Hematopoietic Scaffold Lnk Upregulates Integrin Outside-In Signaling in Platelets Blood, 2005, 106, 382-382.	1.4	0
63	CD61/ Integrin \hat{I}^2 3 Ligation Contributes to the Thrombopoietin-Mediated Niche Function of Mouse Hematopoietic Stem Cells Blood, 2009, 114, 383-383.	1.4	0
64	IL-1[alpha] induces thrombopoiesis through megakaryocyte rupture in response to acute platelet needs. Journal of Experimental Medicine, 2015, 212, 21250IA27.	8.5	0
65	VI. iPS Cell-derived Platelets. The Journal of the Japanese Society of Internal Medicine, 2019, 108, 1397-1403.	0.0	Ο