Yin Du

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5201950/publications.pdf

Version: 2024-02-01

567281 642732 15 24 688 23 citations h-index g-index papers 24 24 24 298 docs citations citing authors all docs times ranked

#	Article	IF	CITATIONS
1	Effect of Al addition on the microstructure, mechanical and wear properties of TiZrNbHf refractory high entropy alloys. Tribology International, 2021, 160, 107031.	5.9	110
2	Identifying the origin of strain rate sensitivity in a high entropy bulk metallic glass. Scripta Materialia, 2019, 164, 121-125.	5.2	65
3	Effects of structure relaxation and surface oxidation on nanoscopic wear behaviors of metallic glass. Acta Materialia, 2022, 232, 117934.	7.9	62
4	Investigation into nanoscratching mechanical performance of metallic glass multilayers with improved nano-tribological properties. Journal of Alloys and Compounds, 2019, 776, 447-459.	5.5	57
5	Identifying the significance of Sn addition on the tribological performance of Ti-based bulk metallic glass composites. Journal of Alloys and Compounds, 2019, 780, 671-679.	5.5	55
6	Imparities of shear avalanches dynamic evolution in a metallic glass. Materials Research Letters, 2020, 8, 357-363.	8.7	42
7	Mechanical and tribological performance of CoCrNiHf eutectic medium-entropy alloys. Journal of Materials Science and Technology, 2021, 90, 194-204.	10.7	37
8	Mechanical and dry sliding tribological properties of CoCrNiNb medium-entropy alloys at room temperature. Tribology International, 2021, 163, 107160.	5.9	27
9	An investigation on the lubrication effectiveness of MoS2 and BN layered materials as oil additives using block-on-ring tests. Tribology International, 2020, 151, 106516.	5.9	25
10	Enhancing the plasticity of a Ti-based bulk metallic glass composite by cryogenic cycling treatments. Journal of Alloys and Compounds, 2020, 835, 155247.	5 . 5	24
11	Mechanical and tribological properties of Zr–Cu–Ni–Al bulk metallic glasses with dual-phase structure. Wear, 2021, 474-475, 203880.	3.1	24
12	Tailoring shear banding behaviors in high entropy bulk metallic glass by minor Sn addition: A nanoindentation study. Journal of Alloys and Compounds, 2018, 762, 422-430.	5.5	21
13	Enhancing the tribological performance of the TiZrHfCuBe high entropy bulk metallic glass by Sn addition. Tribology International, 2022, 171, 107529.	5. 9	19
14	Modulating mechanical properties of Ti-based bulk metallic glass composites by tailoring dendrite composition with Sn addition. Journal of Alloys and Compounds, 2018, 745, 16-25.	5.5	18
15	Cracking and Toughening Mechanisms in Nanoscale Metallic Multilayer Films: A Brief Review. Applied Sciences (Switzerland), 2018, 8, 1821.	2.5	18
16	Cryogenic wear behaviors of a metastable Ti-based bulk metallic glass composite. Journal of Materials Science and Technology, 2023, 134, 33-41.	10.7	14
17	Improving the wear performance of a commercial Vit 1 amorphous alloy by a cryogenic cycling treatment. Journal of Materials Science, 2021, 56, 8276-8287.	3.7	12
18	Tribological characteristics of Ti-based bulk metallic glass via deep cryogenic-cycling treatment. Materials Characterization, 2021, 179, 111356.	4.4	11

#	Article	IF	CITATIONS
19	Strain rate sensitivity and deformation behavior in a Ti-based bulk metallic glass composite. Journal of Non-Crystalline Solids, 2017, 471, 128-136.	3.1	10
20	Enhancing fatigue wear resistance of a bulk metallic glass via introducing phase separation: A micro-impact test analysis. Wear, 2019, 436-437, 203037.	3.1	10
21	Identifying the high entropy effect on plastic dynamics in bulk metallic glasses: A nanoindentation study at room and elevated temperatures. Materials and Design, 2020, 189, 108500.	7.0	10
22	A wear-resistant metastable CoCrNiCu high-entropy alloy with modulated surface and subsurface structures. Friction, 2022, 10, 1722-1738.	6.4	9
23	A nanoindentation study of Ti-based high entropy bulk metallic glasses at elevated temperatures. Journal of Non-Crystalline Solids, 2020, 532, 119878.	3.1	7
24	High-Entropy Alloys: Bulk Metallic Glasses. , 2022, , 318-326.		1