
Amelie Stein

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5201673/publications.pdf Version: 2024-02-01

AMELIE STEIN

#	Article	IF	CITATIONS
1	Macromolecular modeling and design in Rosetta: recent methods and frameworks. Nature Methods, 2020, 17, 665-680.	19.0	513
2	3did: a catalog of domain-based interactions of known three-dimensional structure. Nucleic Acids Research, 2014, 42, D374-D379.	14.5	249
3	Combined Covalent-Electrostatic Model of Hydrogen Bonding Improves Structure Prediction with Rosetta. Journal of Chemical Theory and Computation, 2015, 11, 609-622.	5.3	204
4	Improvements to Robotics-Inspired Conformational Sampling in Rosetta. PLoS ONE, 2013, 8, e63090.	2.5	176
5	3did: interacting protein domains of known three-dimensional structure. Nucleic Acids Research, 2004, 33, D413-D417.	14.5	160
6	Biophysical and Mechanistic Models for Disease-Causing Protein Variants. Trends in Biochemical Sciences, 2019, 44, 575-588.	7.5	143
7	Contextual Specificity in Peptide-Mediated Protein Interactions. PLoS ONE, 2008, 3, e2524.	2.5	140
8	3did: identification and classification of domain-based interactions of known three-dimensional structure. Nucleic Acids Research, 2011, 39, D718-D723.	14.5	134
9	Structure of the FoxM1 DNA-recognition domain bound to a promoter sequence. Nucleic Acids Research, 2010, 38, 4527-4538.	14.5	109
10	Dynamic interactions of proteins in complex networks: a more structured view. FEBS Journal, 2009, 276, 5390-5405.	4.7	104
11	Predicting the impact of Lynch syndrome-causing missense mutations from structural calculations. PLoS Genetics, 2017, 13, e1006739.	3.5	90
12	Three-dimensional modeling of protein interactions and complexes is going â€~omics. Current Opinion in Structural Biology, 2011, 21, 200-208.	5.7	86
13	Control of protein signaling using a computationally designed GTPase/GEF orthogonal pair. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 5277-5282.	7.1	73
14	3did Update: domain-domain and peptide-mediated interactions of known 3D structure. Nucleic Acids Research, 2009, 37, D300-D304.	14.5	67
15	Understanding the Origins of Loss of Protein Function by Analyzing the Effects of Thousands of Variants on Activity and Abundance. Molecular Biology and Evolution, 2021, 38, 3235-3246.	8.9	65
16	Predicting and interpreting large-scale mutagenesis data using analyses of protein stability and conservation. Cell Reports, 2022, 38, 110207.	6.4	62
17	Uncovering new substrates for Aurora A kinase. EMBO Reports, 2010, 11, 977-984.	4.5	59
18	Novel Peptide-Mediated Interactions Derived from High-Resolution 3-Dimensional Structures. PLoS Computational Biology, 2010, 6, e1000789.	3.2	56

Amelie Stein

#	Article	IF	CITATIONS
19	Toward mechanistic models for genotype–phenotype correlations in phenylketonuria using protein stability calculations. Human Mutation, 2019, 40, 444-457.	2.5	56
20	Computational and cellular studies reveal structural destabilization and degradation of MLH1 variants in Lynch syndrome. ELife, 2019, 8, .	6.0	49
21	A Systematic Study of the Energetics Involved in Structural Changes upon Association and Connectivity in Protein Interaction Networks. Structure, 2011, 19, 881-889.	3.3	42
22	Approved Drug Mimics of Short Peptide Ligands from Protein Interaction Motifs. Journal of Chemical Information and Modeling, 2008, 48, 1943-1948.	5.4	35
23	Protein stability and degradation in health and disease. Advances in Protein Chemistry and Structural Biology, 2019, 114, 61-83.	2.3	31
24	Co-Chaperones in Targeting and Delivery of Misfolded Proteins to the 26S Proteasome. Biomolecules, 2020, 10, 1141.	4.0	29
25	Blocking protein quality control to counter hereditary cancers. Genes Chromosomes and Cancer, 2017, 56, 823-831.	2.8	23
26	Classifying disease-associated variants using measures of protein activity and stability. , 2020, , 91-107.		21
27	Folliculin variants linked to Birt-Hogg-Dubé syndrome are targeted for proteasomal degradation. PLoS Genetics, 2020, 16, e1009187.	3.5	16
28	Ensuring scientific reproducibility in bio-macromolecular modeling via extensive, automated benchmarks. Nature Communications, 2021, 12, 6947.	12.8	16
29	Disease-linked mutations cause exposure of a protein quality control degron. Structure, 2022, 30, 1245-1253.e5.	3.3	14
30	Multiplexed assays reveal effects of missense variants in MSH2 and cancer predisposition. PLoS Genetics, 2021, 17, e1009496.	3.5	13
31	A molecular interpretation of genetic interactions in yeast. FEBS Letters, 2008, 582, 1245-1250.	2.8	12
32	Mapping the degradation pathway of a disease-linked aspartoacylase variant. PLoS Genetics, 2021, 17, e1009539.	3.5	12
33	Random Mutagenesis Analysis of the Influenza A M2 Proton Channel Reveals Novel Resistance Mutants. Biochemistry, 2018, 57, 5957-5968.	2.5	11
34	Novel HARS2 missense variants identified in individuals with sensorineural hearing impairment and Perrault syndrome. European Journal of Medical Genetics, 2020, 63, 103733.	1.3	9
35	Protein destabilization and degradation as a mechanism for hereditary disease. , 2020, , 111-125.		5
36	Disorder in a two-domain neuronal Ca2+-binding protein regulates domain stability and dynamics using ligand mimicry. Cellular and Molecular Life Sciences, 2021, 78, 2263-2278.	5.4	4

#	Article	IF	CITATIONS
37	Co-evolution of drug resistance and broadened substrate recognition in HIV protease variants isolated from an <i>Escherichia coli</i> genetic selection system. Biochemical Journal, 2022, 479, 479-501.	3.7	1