
Panayiotis Diplas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5200800/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Role of Impulse on the Initiation of Particle Movement Under Turbulent Flow Conditions. Science, 2008, 322, 717-720.	12.6	277
2	Role of instantaneous force magnitude and duration on particle entrainment. Journal of Geophysical Research, 2010, 115, .	3.3	128
3	Comparison of testing techniques and models for establishing the SWCC of riverbank soils. Engineering Geology, 2010, 110, 1-10.	6.3	101
4	Bedload Transport in Gravelâ€Bed Streams. Journal of Hydraulic Engineering, 1987, 113, 277-292.	1.5	91
5	Large Eddy Simulation of Turbulent Flow Through Submerged Vegetation. Transport in Porous Media, 2009, 78, 347-365.	2.6	90
6	Impulse and particle dislodgement under turbulent flow conditions. Physics of Fluids, 2010, 22, .	4.0	86
7	Entrainment of coarse particles in turbulent flows: An energy approach. Journal of Geophysical Research F: Earth Surface, 2013, 118, 42-53.	2.8	86
8	Applying spatial hydraulic principles to quantify stream habitat. River Research and Applications, 2006, 22, 79-89.	1.7	78
9	Entrainment of coarse grains in turbulent flows: An extreme value theory approach. Water Resources Research, 2011, 47, .	4.2	72
10	Determination of the shear strength of unsaturated soils using the multistage direct shear test. Engineering Geology, 2011, 122, 272-280.	6.3	67
11	Instantaneous turbulent forces and impulse on a rough bed: Implications for initiation of bed material movement. Water Resources Research, 2013, 49, 2213-2227.	4.2	65
12	Probability of Individual Grain Movement and Threshold Condition. Journal of Hydraulic Engineering, 2002, 128, 1069-1075.	1.5	57
13	Time-resolved flow dynamics and Reynolds number effects at a wall–cylinder junction. Journal of Fluid Mechanics, 2015, 776, 475-511.	3.4	53
14	Accounting for the role of turbulent flow on particle dislodgement via a coupled quadrant analysis of velocity and pressure sequences. Advances in Water Resources, 2017, 101, 37-48.	3.8	53
15	Impact of Three Gorges Dam operation on the spawning success of four major Chinese carps. Ecological Engineering, 2019, 127, 268-275.	3.6	31
16	Bed load sediment transport in ephemeral and perennial gravel bed streams. Eos, 2005, 86, 429.	0.1	29
17	A Unified Approach to Bed Load Transport Description Over a Wide Range of Flow Conditions via the Use of Conditional Data Treatment. Water Resources Research, 2018, 54, 3490-3509.	4.2	27
18	Highâ€resolution 3â€D monitoring of evolving sediment beds. Water Resources Research, 2013, 49, 977-992.	4.2	26

PANAYIOTIS DIPLAS

#	Article	IF	CITATIONS
19	Approach to Separate Sand from Gravel for Bed-Load Transport Calculations in Streams with Bimodal Sediment. Journal of Hydraulic Engineering, 2006, 132, 1176-1185.	1.5	20
20	Quantitative Spatio-Temporal Characterization of Scour at the Base of a Cylinder. Water (Switzerland), 2017, 9, 227.	2.7	18
21	Prediction of coarse particle movement with adaptive neuro-fuzzy inference systems. Hydrological Processes, 2011, 25, 3513-3524.	2.6	17
22	Data evaluation for acoustic Doppler current profiler measurements obtained at fixed locations in a natural river. Water Resources Research, 2013, 49, 1003-1016.	4.2	15
23	Combining fixed- and moving-vessel acoustic Doppler current profiler measurements for improved characterization of the mean flow in a natural river. Water Resources Research, 2013, 49, 5600-5614.	4.2	14
24	Simulation-based optimization of in-stream structures design: J-hook vanes. Journal of Hydraulic Research/De Recherches Hydrauliques, 2015, 53, 588-608.	1.7	12
25	Incipient motion of a non-cohesive particle under Stokes flow conditions. International Journal of Multiphase Flow, 2018, 99, 151-161.	3.4	11
26	Hydraulic Modeling of Extreme Hydrologic Events: Case Study in Southern Virginia. Journal of Hydraulic Engineering, 2014, 140, .	1.5	10
27	Effects of wall roughness on turbulent junction flow characteristics. Experiments in Fluids, 2016, 57, 1.	2.4	10
28	Laboratory and In Situ Determination of Hydraulic Conductivity and Their Validity in Transient Seepage Analysis. Water (Switzerland), 2021, 13, 1131.	2.7	5
29	Flow dynamics in the vicinity of a gravel embedded vertical retaining wall: conditions corresponding to the initial stages of local erosion. Environmental Fluid Mechanics, 2020, 20, 203-225.	1.6	4
30	Modeling Hydroâ€Morphodynamic Processes During the Propagation of Fluvial Sediment Pulses: A Physicsâ€Based Framework. Journal of Geophysical Research F: Earth Surface, 2020, 125, e2020JF005722.	2.8	4
31	Modal Analysis of Turbulent Flow near an Inclined Bank–Longitudinal Structure Junction. Journal of Hydraulic Engineering, 2021, 147, .	1.5	4
32	Elevation: a consistent and physically-based framework for classifying streams. Journal of Hydraulic Research/De Recherches Hydrauliques, 2018, 56, 299-312.	1.7	3
33	Threshold of Motion Conditions Under Stokes Flow Regime and Comparison With Turbulent Flow Data. Water Resources Research, 2019, 55, 10872-10892.	4.2	3
34	Effects of Hydropower Dam Operation on Riverbank Stability. Infrastructures, 2021, 6, 127.	2.8	1
35	The Role of Turbulence on the Initiation of Sediment Movement. , 2009, , .		0
36	Special Issue on River Flow Hydrodynamics: Physical and Ecological Aspects. Journal of Hydraulic Engineering, 2010, 136, 965-966.	1.5	0

#	Article	IF	CITATIONS
37	Review of "River Training and Sediment Management with Submerged Vanes―by A. Jacob Odgaard"River Training and Sediment Management with Submerged Vanesâ€ASCE Press\$75.00. Journal of Hydraulic Engineering, 2010, 136, 90-91.	1.5	0