
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5200646/publications.pdf Version: 2024-02-01

KEN CADWELL

#	Article	IF	CITATIONS
1	IL-17RA-signaling in Lgr5+ intestinal stem cells induces expression of transcription factor ATOH1 to promote secretory cell lineage commitment. Immunity, 2022, 55, 237-253.e8.	14.3	30
2	Variable susceptibility of intestinal organoid–derived monolayers to SARS-CoV-2 infection. PLoS Biology, 2022, 20, e3001592.	5.6	23
3	Pathogen Species Is Associated With Mortality in Nosocomial Bloodstream Infection in Patients With COVID-19. Open Forum Infectious Diseases, 2022, 9, .	0.9	6
4	Playing dirty with virus transmission. Journal of Experimental Medicine, 2022, 219, .	8.5	0
5	Microbial byproducts determine reproductive fitness of free-living and parasitic nematodes. Cell Host and Microbe, 2022, 30, 786-797.e8.	11.0	9
6	Microbiome-Independent Effects of Antibiotics in a Murine Model of Nosocomial Infections. MBio, 2022, 13, .	4.1	3
7	Effects of Intestinal Fungi and Viruses on Immune Responses and Inflammatory Bowel Diseases. Gastroenterology, 2021, 160, 1050-1066.	1.3	70
8	The role of gastrointestinal pathogens in inflammatory bowel disease: a systematic review. Therapeutic Advances in Gastroenterology, 2021, 14, 175628482110044.	3.2	28
9	Nod1 promotes colorectal carcinogenesis by regulating the immunosuppressive functions of tumor-infiltrating myeloid cells. Cell Reports, 2021, 34, 108677.	6.4	44
10	Single-Cell Transcriptional Survey of Ileal-Anal Pouch Immune Cells From Ulcerative Colitis Patients. Gastroenterology, 2021, 160, 1679-1693.	1.3	40
11	Enteric viruses evoke broad host immune responses resembling those elicited by the bacterial microbiome. Cell Host and Microbe, 2021, 29, 1014-1029.e8.	11.0	35
12	Serologic Response to Messenger RNA Coronavirus Disease 2019 Vaccines in Inflammatory Bowel Disease Patients Receiving Biologic Therapies. Gastroenterology, 2021, 161, 715-718.e4.	1.3	102
13	Autophagy in major human diseases. EMBO Journal, 2021, 40, e108863.	7.8	615
14	Editorial overview: The virome in health and disease. Current Opinion in Virology, 2021, 49, 139-141.	5.4	1
15	COVID-19 and the Forgotten Organ: Prolonged Changes to the Metabolic Output of the Gut Microbiome. Gastroenterology, 2021, , .	1.3	6
16	Atovaquone and Berberine Chloride Reduce SARS-CoV-2 Replication In Vitro. Viruses, 2021, 13, 2437.	3.3	10
17	Regulation of interferon signaling in response to gut microbes by autophagy. Gut Microbes, 2020, 11, 126-134.	9.8	8
18	Autophagy and microbial pathogenesis. Cell Death and Differentiation, 2020, 27, 872-886.	11.2	54

#	Article	IF	CITATIONS
19	Tumor Necrosis Factor-α–Induced Apoptosis in the Intestinal Epithelium due to Chronic Nuclear Factor Kappa B Signaling Is Mediated by Receptor Interacting Serine/Threonine Kinase 1. Cellular and Molecular Gastroenterology and Hepatology, 2020, 9, 337-338.	4.5	5
20	Paneth Cell-Derived Lysozyme Defines the Composition of Mucolytic Microbiota and the Inflammatory Tone of the Intestine. Immunity, 2020, 53, 398-416.e8.	14.3	97
21	A single early-in-life antibiotic course increases susceptibility to DSS-induced colitis. Genome Medicine, 2020, 12, 65.	8.2	33
22	Systematic review: gastrointestinal infection and incident inflammatory bowel disease. Alimentary Pharmacology and Therapeutics, 2020, 51, 1222-1232.	3.7	33
23	An intestinal organoid–based platform that recreates susceptibility to T-cell–mediated tissue injury. Blood, 2020, 135, 2388-2401.	1.4	39
24	Decoy exosomes provide protection against bacterial toxins. Nature, 2020, 579, 260-264.	27.8	149
25	Reinvigorating NIH Grant Peer Review. Immunity, 2020, 52, 1-3.	14.3	20
26	Altered Immunity of Laboratory Mice in the Natural Environment Is Associated with Fungal Colonization. Cell Host and Microbe, 2020, 27, 809-822.e6.	11.0	119
27	Rewilding Nod2 and Atg16l1 Mutant Mice Uncovers Genetic and Environmental Contributions to Microbial Responses and Immune Cell Composition. Cell Host and Microbe, 2020, 27, 830-840.e4.	11.0	62
28	Mapping the evolutionary landscape of Zika virus infection in immunocompromised mice. Virus Evolution, 2020, 6, veaa092.	4.9	9
29	Gut epithelial TSC1/mTOR controls RIPK3-dependent necroptosis in intestinal inflammation and cancer. Journal of Clinical Investigation, 2020, 130, 2111-2128.	8.2	111
30	IFN-I and IL-22 mediate protective effects of intestinal viral infection. Nature Microbiology, 2019, 4, 1737-1749.	13.3	74
31	Staphylococcus aureus Leukocidins Target Endothelial DARC to Cause Lethality in Mice. Cell Host and Microbe, 2019, 25, 463-470.e9.	11.0	26
32	Vasculature-associated fat macrophages readily adapt to inflammatory and metabolic challenges. Journal of Experimental Medicine, 2019, 216, 786-806.	8.5	100
33	Universal Principled Review: A Community-Driven Method to Improve Peer Review. Cell, 2019, 179, 1441-1445.	28.9	6
34	172 Multiplex Polymerase Chain Reaction Stool Testing Detects Pathogens Not Frequently Detected on Concurrent Stool Culture With Ova and Parasite Exam. American Journal of Gastroenterology, 2019, 114, S105-S106.	0.4	0
35	Tropism for tuft cells determines immune promotion of norovirus pathogenesis. Science, 2018, 360, 204-208.	12.6	187
36	Autophagy and Inflammation. Annual Review of Immunology, 2018, 36, 73-101.	21.8	263

#	Article	IF	CITATIONS
37	Beyond self-eating: The control of nonautophagic functions and signaling pathways by autophagy-related proteins. Journal of Cell Biology, 2018, 217, 813-822.	5.2	92
38	Myeloid ATG16L1 does not affect adipose tissue inflammation or body mass in mice fed high fat diet. Obesity Research and Clinical Practice, 2018, 12, 174-186.	1.8	7
39	There was collusion: Microbes in inflammatory bowel disease. PLoS Pathogens, 2018, 14, e1007215.	4.7	15
40	The Intestinal Virome and Immunity. Journal of Immunology, 2018, 201, 1615-1624.	0.8	81
41	Sugar Turns Bacteria Sweet: A Peace Offering in the Gut. Cell, 2018, 175, 36-37.	28.9	1
42	Autophagy proteins suppress protective type I interferon signalling in response to the murine gut microbiota. Nature Microbiology, 2018, 3, 1131-1141.	13.3	70
43	A20 and ABIN-1 team up against intestinal epithelial cell death. Journal of Experimental Medicine, 2018, 215, 1771-1773.	8.5	Ο
44	Enteric Infections Are Common in Patients with Flares of Inflammatory Bowel Disease. American Journal of Gastroenterology, 2018, 113, 1530-1539.	0.4	71
45	B Cell Defects Observed in <i>Nod2</i> Knockout Mice Are a Consequence of a <i>Dock2</i> Mutation Frequently Found in Inbred Strains. Journal of Immunology, 2018, 201, 1442-1451.	0.8	13
46	Getting a Taste for Parasites in the Gut. Immunity, 2018, 49, 16-18.	14.3	6
47	Gut colonization with vancomycin-resistant Enterococcus and risk for subsequent enteric infection. Gut Pathogens, 2018, 10, 28.	3.4	15
48	A single early-in-life macrolide course has lasting effects on murine microbial network topology and immunity. Nature Communications, 2017, 8, 518.	12.8	119
49	Autophagy protein ATG16L1 prevents necroptosis in the intestinal epithelium. Journal of Experimental Medicine, 2017, 214, 3687-3705.	8.5	229
50	Tregs restrain dendritic cell autophagy to ameliorate autoimmunity. Journal of Clinical Investigation, 2017, 127, 2789-2804.	8.2	92
51	Intrinsic Defense Mechanisms of the Intestinal Epithelium. Cell Host and Microbe, 2016, 19, 434-441.	11.0	107
52	Helminth infection promotes colonization resistance via type 2 immunity. Science, 2016, 352, 608-612.	12.6	347
53	Crosstalk between autophagy and inflammatory signalling pathways: balancing defence and homeostasis. Nature Reviews Immunology, 2016, 16, 661-675.	22.7	341
54	Antibiotic-mediated gut microbiome perturbation accelerates development of type 1 diabetes in mice. Nature Microbiology, 2016, 1, 16140.	13.3	275

#	Article	IF	CITATIONS
55	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
56	The Virome in Host Health and Disease. Immunity, 2015, 42, 805-813.	14.3	151
57	Autophagy is a key tolerance mechanism during <i>Staphylococcus aureus</i> infection. Autophagy, 2015, 11, 1184-1186.	9.1	27
58	Expanding the Role of the Virome: Commensalism in the Gut. Journal of Virology, 2015, 89, 1951-1953.	3.4	68
59	Autophagy Mediates Tolerance to Staphylococcus aureus Alpha-Toxin. Cell Host and Microbe, 2015, 17, 429-440.	11.0	127
60	Gastrointestinal Dissemination and Transmission of Staphylococcus aureus following Bacteremia. Infection and Immunity, 2015, 83, 372-378.	2.2	15
61	Ubiquilin 1 Promotes IFN-γ-Induced Xenophagy of Mycobacterium tuberculosis. PLoS Pathogens, 2015, 11, e1005076.	4.7	71
62	Autophagy, viruses, and intestinal immunity. Current Opinion in Gastroenterology, 2014, 30, 539-546.	2.3	15
63	An enteric virus can replace the beneficial function of commensal bacteria. Nature, 2014, 516, 94-98.	27.8	449
64	Autophagy Facilitates <i>Salmonella</i> Replication in HeLa Cells. MBio, 2014, 5, e00865-14.	4.1	84
65	Bacterial Sensor Nod2 Prevents Inflammation of the Small Intestine by Restricting the Expansion of the Commensal Bacteroides vulgatus. Immunity, 2014, 41, 311-324.	14.3	226
66	Autophagy Gene Atg16l1 Prevents Lethal T Cell Alloreactivity Mediated by Dendritic Cells. Immunity, 2014, 41, 579-591.	14.3	87
67	A Deficiency in the Autophagy Gene Atg16L1 Enhances Resistance to Enteric Bacterial Infection. Cell Host and Microbe, 2013, 14, 216-224.	11.0	107
68	Autophagy Meets Phagocytosis. Immunity, 2013, 39, 425-427.	14.3	19
69	Bacteria, it's What's for Dinner. Cell Host and Microbe, 2013, 13, 627-628.	11.0	1
70	Autophagy proteins control goblet cell function by potentiating reactive oxygen species production. EMBO Journal, 2013, 32, 3130-3144.	7.8	216
71	FIP200 regulates targeting of Atg16L1 to the isolation membrane. EMBO Reports, 2013, 14, 284-291.	4.5	159
72	Atg16L1 deficiency confers protection from uropathogenic <i>Escherichia coli</i> infection in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 11008-11013.	7.1	104

#	Article	IF	CITATIONS
73	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	9.1	3,122
74	Viruses, Autophagy Genes, and Crohn's Disease. Viruses, 2011, 3, 1281-1311.	3.3	31
75	Crohn's Disease Susceptibility Gene Interactions, a NOD to the Newcomer ATG16L1. Gastroenterology, 2010, 139, 1448-1450.	1.3	24
76	Virus-Plus-Susceptibility Gene Interaction Determines Crohn's Disease Gene Atg16L1 Phenotypes in Intestine. Cell, 2010, 141, 1135-1145.	28.9	809
77	Identification of <i>Atg5</i> -dependent transcriptional changes and increases in mitochondrial mass in <i>Atg5</i> -deficient T lymphocytes. Autophagy, 2009, 5, 625-635.	9.1	187
78	Quantitation of selective autophagic protein aggregate degradation in vitro and in vivo using luciferase reporters. Autophagy, 2009, 5, 511-519.	9.1	41
79	Role of Autophagy and Autophagy Genes in Inflammatory Bowel Disease. Current Topics in Microbiology and Immunology, 2009, 335, 141-167.	1.1	43
80	A common role for Atg16L1, Atg5, and Atg7 in small intestinal Paneth cells and Crohn disease. Autophagy, 2009, 5, 250-252.	9.1	202
81	A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells. Nature, 2008, 456, 259-263.	27.8	1,341
82	Autophagosome-Independent Essential Function for the Autophagy Protein Atg5 in Cellular Immunity to Intracellular Pathogens. Cell Host and Microbe, 2008, 4, 458-469.	11.0	374
83	The autophagy gene <i>ATG5</i> plays an essential role in B lymphocyte development. Autophagy, 2008, 4, 309-314.	9.1	314
84	The Specificities of Kaposi's Sarcoma-Associated Herpesvirus-Encoded E3 Ubiquitin Ligases Are Determined by the Positions of Lysine or Cysteine Residues within the Intracytoplasmic Domains of Their Targets. Journal of Virology, 2008, 82, 4184-4189.	3.4	54
85	Ubiquitination on Nonlysine Residues by a Viral E3 Ubiquitin Ligase. Science, 2005, 309, 127-130.	12.6	350